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1. Introduction

Autoimmune diseases, significant challenges to global health, result from immune 
responses targeting self-antigens [1]. Understanding these diseases requires explor-
ing the underlying molecular mechanisms, offering crucial perspectives on targeted 
therapy development.

2. Balancing immunity: tolerance and defense

The immune system aims to maintain cellular and tissue integrity, reject foreign 
entities, and tolerate self-antigens [2, 3]. This delicate balance relies on distinguishing 
nonself (pathogens) and modified self-components from unmodified self-antigens, 
which are tolerated.

3. Key features of innate and adaptive immunity

Innate and adaptive immunity are crucial for maintaining immune system integrity. 
Innate immunity acts as a first line of immune defense, while adaptive immunity pro-
vides immunological memory. This feature might similarly apply to innate immunity, 
albeit in a distinctive manner without clonal distribution. In this regard, it’s important 
to mention that we are presently exploring the concept of trained immunity.

4.  Orchestrating tolerance: comprehensive insights into T-cell regulation 
and research in therapeutic potentials

T-cells under the orchestration of various regulatory mechanisms are pivotal in 
maintaining immunological tolerance [4]. This orchestration extends from the central 
tolerance mechanisms within the thymus that eliminate autoreactive T-cells [5] to 
peripheral tolerance mechanisms that prevent T-cell responses to self-antigens in 
peripheral tissues.
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In the periphery, mature lymphocytes navigate through a sophisticated process 
of encountering self-antigens, leading to intrinsic anergy, apoptosis, or regulatory 
control by regulatory T-cells (Tregs) [6–8]. This complex ballet of peripheral toler-
ance is essential in curbing T-cell responses to self-antigens.

The fate of naive T-cells is intricately influenced by the balance between antigen 
(Signal 1) and co-stimulation (Signal 2). Co-stimulation mediated by immune 
checkpoints, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed 
cell death protein 1 (PD-1), plays a crucial role in regulating T-cell activation [9]. 
Anergy in T-cells encountering self-antigens emerges from inadequate co-stimulation, 
involving aberrant T-cell receptor (TCR) signaling and heightened co-inhibitory 
signals [10, 11].

The orchestration of immune balance extends to the interplay between activating 
receptors (TCR complex, CD28) and inhibitory receptors (CTLA-4, PD-1). CTLA-4 
halts T-cell activation by removing B7 (CD80/CD86) ligands from antigen-presenting 
cells (APCs), while PD-1 inhibits T-cell activation through downstream signaling 
[12–14]. Recognition of self-antigens induces apoptosis in T-cells through multiple 
mechanisms [15, 16].

This comprehensive understanding of T-cell regulation provides insights into the 
intricate mechanisms that maintain immunological equilibrium.

One such approach involves unleashing the immune arsenal by targeting inhibitory 
receptors like CTLA-4 and PD-1 in therapies. While this amplifies antitumor immune 
responses, it may also pose the risk of triggering autoimmune reactions. Ongoing 
research delves into the exploration of other inhibitory receptors as potential targets 
for checkpoint blockade therapy. Another avenue involves tapping into Treg cells, 
which play a vital role in immune balance. Treg cells suppress harmful lymphocytes 
through different mechanisms, including cytokine production (IL-10, TGF-β) and 
expression of inhibitory molecules, such as CTLA-4. Treg cell therapy is gaining 
traction for addressing autoimmune diseases, graft-versus-host reactions, and graft 
rejection. Additionally, ongoing trials are investigating the potential of IL-2 in regulat-
ing immune reactions and highlighting the therapeutic applications of Treg cells [17].

5. B-cell tolerance

Balancing B-cell tolerance is a multifaceted process crucial for immune homeo-
stasis. During B-cell development, negative selection eliminates cells with high 
self-antigen affinity, preventing the production of autoantibodies. Positive selection 
evaluates receptor functionality with a moderate self-antigen response, while exces-
sive self-reactivity triggers receptor reformatting, known as receptor editing, involv-
ing gene rearrangements in the immunoglobulin M (IgM) light chain loci [18].

Self-reactive B-cell tolerance mechanisms encompass various strategies, including 
receptor editing, deletion, anergy, and competition for growth factors. Anergy ren-
ders B-cells functionally incapacitated, particularly when recognizing soluble proteins 
with low avidity in the bone marrow or specific microenvironments [19].

Similar to T-cells, B-cells also undergo two types of tolerance mechanisms–central 
and peripheral. Central tolerance of B-cells occurs during development in the bone 
marrow and involves receptor editing or negative selection, targeting B-cells with 
high-affinity receptors for prevalent autoantigens [20]. In peripheral lymphoid 
tissues, mature B-cells may undergo anergy, becoming unresponsive to autoantigens 
independently of T-cell assistance [21]. While essential for thymus-independent 
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self-antigens such as polysaccharides and lipids, these anergic B-cells exit lymphoid 
follicles, but their survival may be compromised without essential stimuli.

Loss of B-cell anergy is a pivotal aspect of the intricate B-cell tolerance mecha-
nism. In the periphery, 20% of B-cells express self-reactive receptors, restrained by 
inhibitory signals that are swiftly reversed upon dissociation from self-antigens. The 
loss of B-cell anergy precedes selected autoimmune disorders, highlighting its poten-
tial contributions to pathogenic B-cells in autoimmunity [22]. This delicate balance 
is further influenced by the regulatory roles of Tregs and regulatory B cells (Bregs), 
contributing to immune equilibrium by curbing excessive inflammatory responses 
[23, 24].

6. Microbiome and fetal antigen tolerance

6.1 Microbial harmony: essential roles in immune tolerance

Commensal microbes in the gut, respiratory tract, and skin perform vital func-
tions. Mature lymphocytes recognize microbes without triggering immune responses, 
aided by some mechanisms like the regulation exerted by IL-10-producing Treg cells. 
Intestinal dendritic cells (DCs) contribute to food antigen tolerance [25–27].

6.2 Treg cells in pregnancy

6.2.1 Orchestrating fetal antigen tolerance

Tolerance to fetal antigens during pregnancy avoids immune responses against 
paternal antigens. Peripheral transcription factor forkhead box protein 3 (FoxP3, 
also known as scurfin) specific to paternal antigens play a crucial role in immune 
suppression, modulating various mechanisms for fetal tolerance. Treg cells peak 
during trophoblast invasion, decreasing during labor, highlighting their dynamic role 
throughout pregnancy [28, 29].

6.2.2 Mechanisms of fetal antigen tolerance

Treg cells influence cytokines and immunological signals, excluding inflammatory 
cells from the uterus, and establishing an immunosuppressive placental microenvi-
ronment. Disruptions in these mechanisms may lead to immune complications during 
pregnancy [30, 31].

7. Autoimmunity: genetic and environmental influences

Autoimmunity emerges as a consequence of the immune system’s aberrant over-
activation targeting its own unaltered components. This phenomenon involves a 
combination of genetic predisposition, epigenetic changes, and various environmen-
tal influences, such as infections, ultraviolet (UV) radiation, medications, vaccina-
tion, and sex hormones. These factors, as depicted in Figure 1, interact intricately to 
impact disease susceptibility, prompting activation of self-reactive T-cells and B-cells. 
The orchestration of T-cells, B-cells, APCs, antibodies, inflammatory cells, and 
cytokines intricately contributes to the complexity of the autoimmune process [1].
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7.1 Genetic factors

7.1.1 Role of MHC alleles

Human leukocyte antigen (HLA) alleles, particularly class II (HLA-DR and 
HLA-DQ ), modulate immune responses involving autoreactive CD4+ T-cells. Specific 
HLA alleles increase autoimmune disease risk, with their exact role remaining 
elusive. Non-classical HLA-G gene, especially soluble HLA-G (sHLA-G), is crucial for 
immune tolerance at the maternal-fetal interface [32–36].

7.1.2 Non-HLA genes

A myriad of non-HLA genes actively contribute to the complex landscape of auto-
immune diseases, introducing polymorphisms that disrupt self-tolerance or set off 
abnormal lymphocyte activation. Noteworthy genes implicated in various autoimmune 
conditions include protein tyrosine phosphatase non-receptor type 22 (PTPN22), SH2B 
adaptor protein 3 (SH2B3), phox (PX) domain-containing serine/threonine kinase 
(PXK), ribonuclease T2 (RNASET2), and C-C motif chemokine receptor 6 (CCR6), 

Figure 1. 
Interplay of genetic and environmental factors in autoimmune diseases. This figure provides a succinct visual 
overview of the complex interrelationships driving autoimmune diseases. Genetic factors include variants of the 
HLA and non-HLA genes. Environmental factors encompass mainly infections, nutrition, gender, low sunlight 
(ultraviolet rays) exposure, hygiene, medications, and sex hormones. Immune responses against self-antigens 
involve CD4+ T-cells, CD8+ T-cells, and B-cells, as well as long-lived “memory” plasma cells producing 
autoantibodies. The failure to maintain tolerance, governed by key mechanisms such as negative selection, Treg 
cells, anergy, and apoptosis, is pivotal in understanding autoimmune disease development. These intricate 
interactions contribute to the development of autoimmune diseases. AIRE: Autoimmune regulator, CCR6: C-C 
motif chemokine receptor 6, CTLA-4: Cytotoxic T-lymphocyte antigen 4, FAS: FAS cell surface death receptor 
(also known as tumor necrosis factor [TNF] receptor superfamily member cluster of differentiation 95 [CD95] 
or apoptosis antigen 1 [APO-1 or APT]), FOXP3: Transcription factor forkhead box protein 3, HLA: Human 
leukocyte antigen, IL23R: Interleukin-23 receptor, IL-2R: Interleukin-2 receptor, LLPCs: Long-lived plasma 
cells, NOD2: Nucleotide-binding oligomerization domain-containing protein 2, PTPN22: Protein tyrosine 
phosphatase non-receptor type 22, RNASET2: Ribonuclease T2, SH2B3: SH2B adaptor protein 3 (also referred to 
as lymphocyte adapter protein [Lnk]), PXK: Phox (PX) domain-containing serine/threonine kinase.
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among others, revealing the genetic diversity underpinning autoimmunity. Furthermore, 
the intricate network extends to innate immunity, where nucleotide-binding oligomer-
ization domain-containing protein 2 (NOD2) gene variations have been specifically 
linked to the development of Crohn’s disease. Variations in genes such as the IL-2 receptor 
(IL2R), IL-23 cytokine receptor (IL23R), and CTLA-4 further underscore the genetic 
associations with autoimmune diseases, adding layers of complexity to the genetic pre-
dispositions involved [37–40]. In some instances, rare autoimmune diseases can be traced 
back to Mendelian mutations in critical genes such as autoimmune regulator (AIRE), 
FOXP3, fas cell surface death receptor (FAS), and CTLA-4, shedding light on the diverse 
genetic factors contributing to the intricate tapestry of autoimmune conditions [41].

7.2 Environmental factors

7.2.1 Infections and type I interferons

In the intricate interplay between infections and the immune system, a dual role 
emerges. On one hand, infections disrupt peripheral T-cell tolerance, setting the stage 
for autoimmune responses. Notably, viral infections prompt the production of Type 
I interferons, a key player in the initiation of autoimmune diseases. The phenomenon 
of molecular mimicry adds another layer, wherein infections generate antigens 
resembling self-antigens, contributing significantly to the breakdown of immune 
tolerance [42–45]. Additionally, infections and tissue damage introduce chemical 
alterations to peripheral tissue antigens, releasing self-antigens. This interaction with 
autoreactive cells becomes a pivotal factor in the path toward autoimmune diseases, 
with the cumulative impact of childhood infections potentially serving as the ignition 
for autoimmunity [46].

7.2.2 Influence of gender, sunlight, and hygiene on autoimmunity

Gender and sunlight exposure, affecting vitamin D3 levels, have been linked to the 
prevalence and progression of autoimmune diseases [47]. The “hygiene hypothesis,” 
which posits that exposure to certain infections may protect against autoimmunity, 
further underscores the impact of environmental factors on autoimmune disease 
development [48, 49].

8. Autoimmune diseases

8.1 Complexity of autoimmune diseases

Exceeding 130, autoimmune diseases vary in severity, falling into organ-specific 
and systemic categories [1]. Complexity arises from genetic and phenotypic diversity, 
with a notable delay in symptom manifestation and diagnostic phenotype develop-
ment. Autoantibodies aid diagnosis and prognosis, yet the coexistence of multiple 
disorders complicates management.

8.2 Autoimmune challenges: temporal insights

Understanding autoimmune diseases reveals shared processes with inherent com-
plexities. Challenges include defining early events recognizable only after diagnostic 
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phenotype development. Recent studies on autoantibody development suggest a 
temporal separation between the onset of an autoimmune response and clinical 
symptoms.

8.3 Phases of autoimmune disease development

Examining autoimmune disease development unveils four phases: susceptibility, 
initiation, propagation, and regulation/resolution. The susceptibility phase (Phase I) 
explores genetic complexities, such as Mendelian patterns in autoimmune polyendo-
crinopathy-candidiasis-ectodermal dystrophy (APECED) and immune dysregulation, 
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. The initiation phase 
(Phase II) focuses on adaptive immune responses, emphasizing immunodominance 
and antigen processing. The propagation phase (Phase III) amplifies the autoimmune 
process, shedding light on adjuvant properties and innate immune receptors [50].

9. Conclusions

Autoimmune diseases, numbering over a hundred, present significant global 
health challenges due to their diverse manifestations. The breakdown of immunologi-
cal tolerance in both central and peripheral mechanisms is crucial for maintaining 
balance, and disruptions can lead to misguided immune responses. Processes such as 
negative selection, Treg cell activity, as well as other immune regulatory cells, anergy, 
and apoptosis are integral to immunological tolerance. Genetic factors, encompassing 
HLA and non-HLA elements, along with environmental triggers, play pivotal roles in 
disease initiation. Ongoing research aims to advance diagnosis and treatment, recog-
nizing distinct phases in disease development for potential intervention. Exploring 
natural regulatory mechanisms provides promising avenues for therapeutic develop-
ment, acknowledging the active role of target tissues and emphasizing a comprehen-
sive understanding. Future investigations focus on genetic and epigenetic factors, 
interactions between innate and adaptive immunity, contributions of Treg cells, and 
the involvement of target tissues in the ongoing amplification process.

© 2024 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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