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Abstract

This chapter outlines how Markov and semi-Markov models can be used in Trans-
portation Infrastructure Management Systems, in particular Pavement and Bridge
Management Systems. The use of Markov models have been used in both Pavement
and Bridge Management Systems for years. In more recent times the use of semi-
Markov models have been introduced in Bridge Management Systems. Research has
shown that if there is enough data available to develop semi-Markov models for
transportation infrastructure, then this stochastic technique can be used to predict the
future network level conditions and can be used in the development of preservation
models for transportation infrastructure. The application of these techniques are not
only limited to transportation infrastructure, but can also be applied in other areas.

Keywords: bridge management, pavement management, bridge deterioration,
pavement deterioration, preservation model

1. Introduction

This chapter demonstrates how Markov and semi-Markov models are used in
Transportation Infrastructure Management. Transportation agencies are interested in
being able to model the deterioration of their infrastructure when no action is taken to
neither maintain, repair nor rehabilitate that infrastructure. The Transportation
agencies also want to know how to best estimate the extension in the service life of an
infrastructure when improvement actions (maintenance, repair or rehabilitation) are
done. The chapter uses examples containing real life data to demonstrate models for
the following actions: deterioration or ‘do-nothing’ actions, improvement action and
rehabilitation.

Markov chain has been used to model the performance of pavements in Pavement
Management Systems (PMSs), such as The Arizona Department of Transportation
(ADOT) Network Optimization System (NOS) [1, 2]. Wang et al. [2] outlined an
approach to compute the transition probabilities of a Markov chain model using
pavement performance data. Nasseri et al. [3] used Markov chain applications to
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investigate the crack histories of flexible pavements and to deduce the cause of rapid
deterioration of surface cracks. Markov chain can also be used to model the deterio-
ration of other infrastructures, including bridge elements, storm water pipes and
wastewater pipes [4–6]. Yang et al. [7, 8] mentioned the use of semi-Markov pro-
cesses for modeling the crack performance of flexible pavements, as a precursor to
outlining how recurrent Markov chains can be used to model crack performance of
flexible pavements. Semi-Markov processes are used in the deterioration models for
other assets such as bridge elements and transformers [9–12]. Although sections 2 and
3 in this chapter uses pavement condition data to describe the application of stochastic
processes for ‘do-nothing’ actions, the techniques can be applied to other transporta-
tion infrastructure, such as bridge elements [13].

2. Markov chain model

This section demonstrates a Markov chain model for flexible (asphalt) road pave-
ment. The stochastic process, known as the Markov chain [14], can be described as
follows: If Xn ¼ i describes a process such that the process is in state i at time n, and the
process in state i has a fixed probability Pi,j of being in state j, after a transition, then

P Xnþ1 ¼ jjXn ¼ i,Xn�1 ¼ in�1, … ,X0 ¼ i0f g ¼ Pi,j (1)

for all states i0, i1,U
^

in�1, i, j and all n≥0.
Consider the range of crack indices associated with flexible (asphalt) road

pavement that have been assigned the respective condition states in the Table 1.
The following equation, used by Wang et al. [2], can be used to generate transition
probabilities for a Markov chain model:

pi,j akð Þ ¼ mi,j akð Þ
mi akð Þ (2)

for i, j ¼ 10,9,8,7,6,5 & 4 where,

• k = kth rehabilitation action, in this case, the ‘do-nothing’ action, i.e. k = 1.

• pi,j akð Þ = transition probability from state i to j after action k is taken.

Crack Index (CRK) range Condition state

9:5≤CRK ≤ 10 10

8:5≤CRK < 9:5 9

7:5≤CRK < 8:5 8

6:5≤CRK < 7:5 7

5:5≤CRK < 6:5 6

4:5≤CRK < 5:5 5

CRK <4:5 4

Table 1.
The range of crack indices and corresponding condition states.
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• mi,j akð Þ = total number of miles of pavement for which the state prior to action k
was i and the state after the action k was j.

• mi akð Þ = total number of miles of pavement for which the state prior to action k
was i.

3. Semi-Markov model

This section demonstrates a Semi-Markov model for flexible (asphalt) road pave-
ment. Consider a stochastic process having states 0,1,2, … , which is such that when-
ever it enters state i, i≥0, then: (1) it will enter the next state j with probability
Pij, i, j, ≥0, and (2) given that the next state is j the sojourn time from i to j has
distribution Fij. For a semi-Markov process, the sojourn times may follow a specific
distribution and the method of Maximum Likelihood Estimation (MLE) can be
used to estimate the parameters of that distribution, such as that of a Weibull
Distribution [13]. Before discussing how the semi-Markov process can be applied to
model deterioration, it is beneficial to define the basic concepts of the MLE method.
The Maximum Likelihood is a well-known technique in statistics used for deriving
estimators [15].

3.1 Maximum likelihood estimation

If there is an identical and independently distributed (iid) sample, X1, … ,Xn from
a population with probability density function (pdf) or probability mass function

(pmf) f xjθ1,U
^

θk
� �

, then the likelihood function is defined by

L θjXð Þ ¼ L θ1, … , θkjx1, … , xnð Þ ¼ Πn
i¼1f xijθ1, … , θkð Þ (3)

Let us assume that the sojourn time follows a Weibull Distribution. The pdf of the
Weibull distribution according to Billington and Allan [16], Tobias and Trindade [17]
is defined by:

f tð Þ ¼ β

α

t
α

� �β�1
e�

t
αð Þβ (4)

where α and β are the respective scale and shape parameters, and t represents the
number of years that each unit of a mile of pavement segment takes to sojourn in one
condition state before transitioning to another state. If η ¼ 1=α, then

f tð Þ ¼ βη ηtð Þβ�1e� ηtð Þβ (5)

Using Eq. 3 [18] it follows that the likelihood is:

L t1, … , tn, η, βð Þ ¼ βηβ
� �n

e�ηβ tβ1 þ … þ tβn
� �

Πn
i¼1t

β�1
i (6)

After differentiating the log likelihood and equating it to zero, the MLE of the
parameters β̂ and η̂ are:
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β̂ ¼
Pn

i¼1t
β̂
i ln tið ÞPn
i¼1t

β̂
i

� 1
n

Xn
i¼1

ln tið Þ
" #�1

(7)

and

η̂ ¼ nPn
i¼1t

β̂
i

" #1=β̂

(8)

respectively.
If there are n units of pavement in a particular condition state and k units have

transitioned to a lower condition state (with complete individual sojourn times
t1 < t2 < … < tk) and the sojourn time for n� k units of pavement are not known, then
the sojourn times T1, … ,Tn � k for the n� k units of pavement should also be
accounted for in the evaluation [13]. For the Weibull distribution, if it is assumed that
the incomplete sojourn times of T1, … ,Tn�k have been observed in addition to the
complete sojourn times t1, … , tk, then the likelihood function can be expressed as:

L ¼ Π
k

i¼1
f tijθð Þ � Πn�k

j¼1 f 1� F Tj, jθ
� �� �

(9)

where i sums over all completed sojourn times, j sums over all incomplete sojourn
times, and θ can be a vector [13].

L t1, … , tn, η, βð Þ ¼ βηβ
� �k

e�ηβ tβ1 þ … þ tβk
� �

Πk
i¼1t

β�1
i Πn�k

j¼1 e
� ηTjð Þβ (10)

producing the MLE of the parameters β̂ and η̂:

β̂ ¼
Pk

i¼1t
β̂
i ln tið Þ þPn�k

j¼1 T
β̂
j ln Tj

� �
Pk

i¼1t
β̂
i þ

Pn�k
j¼1 T

β̂
j

� 1
k

Xk
i¼1

ln tið Þ
2
4

3
5
�1

(11)

and

η̂ ¼ kPk
i¼1t

β̂
i þ

Pn�kki¼1T
β̂
j

2
4

3
5
1=β̂

(12)

3.2 Semi-Markov Kernel

To demonstrate how the semi-Markov can be developed by knowing the sojourn
times in a particular condition state before transitioning, one may consider the semi-
Markov kernel in the form shown in Eq. 13. Ibe [19] defines the one-step transition
probability Qi,j tð Þ of the semi-Markov process as:

Qi,j tð Þ ¼ P Xnþ1 ¼ j,Gn ≤ tjXn ¼ i½ � t≥0 (13)

where Qi,j tð Þ is the conditional probability that the process will be in state j next,
given that it is in state i currently and that the waiting time in the current state i is no
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more than t. Gn is the time the process spends in i before transitioning to j. It also
follows that:

Qi,j tð Þ ¼ pi,jHi,j tð Þ (14)

where pi,j is defined as the transition probability of the embedded Markov chain,
and

Hi,j tð Þ ¼ P Gn ≤ tjXn ¼ i,Xnþ1 ¼ j½ � (15)

3.2.1 Semi-Markov process

Howard [20] provided the following formulation to determine the probability that
a continuous-time semi-Markov process will be in state j at time n given that it entered
state i at time zero.

ϕij nð Þ ¼ δij
>wi nð Þ þ

XN
k¼1

pik

ðn
0
hik mð Þϕkj n�mð Þi ¼ 1, 2, … ,N; j ¼ 1, 2, … ,N;

n ¼ 0,1,2,

…

(16)

δij ¼
1 i ¼ j;
0 i 6¼ j:

�
(17)

where ϕij nð Þ is the probability that a continuous-time semi-Markov process will be
in state j at time n given that it entered state i at time n ¼ 0 and is referred to as the
interval transition probability from state i to state j in the interval 0, nð Þ. >wi nð Þ is the
probability that the process will exit its starting state i at a time greater than n.

The second term in 3.2.1 describes the probability of the sequence of events, such
that the process makes an initial transition from state i to some state k at some time m
and thereafter proceeds from state k to state j in the remaining time n–m. To account
for all possible scenarios, the probability is summed over all states k to which the first
transition could have been made and over all times of the initial transition,m, between
l and n. pik is the probability of transitioning from i to k, and hik mð Þ represents the
probability distribution of the sojourn time from i to k at time m. The matrix formu-
lation of 3.2.1 can be expressed as:

Φ nð Þ¼>W nð Þ þ
ðn
0
P□H mð Þ½ �Φ n�mð Þ n ¼ 0,1,2, … (18)

In addition, let

C mð Þ ¼ P□H mð Þ½ � (19)

where C(m) is defined as the core matrix [20]. The elements of C mð Þ are
cij mð Þ ¼ pijhij mð Þ, where pij represents the transition probability of the embedded
Markov chain and hij mð Þ represents the probability distribution of the sojourn time in
state i, before transitioning to j at time m.

5

The Application of Markov and Semi-Markov Models in Transportation Infrastructure…
DOI: http://dx.doi.org/10.5772/intechopen.1001134



As a result, the interval transition matrix representing a single transition at timem,
Φ0,m mð Þ, for ‘do-nothing’ actions can be expressed as:

Φ0,m mð Þ ¼

1�P9
j¼4p10,jH10,j mð Þ … … … … p10,5H10,5 mð Þ p10,4H10,4 mð Þ

0 ⋱ … … … p9,5H9,5 mð Þ p9,4H9,4 mð Þ
0 0 ⋱ … … p8,5H8,5 mð Þ p8,4H8,4 mð Þ
0 0 0 ⋱ … p7,5H7,5 mð Þ p7,4H7,4 mð Þ
0 0 0 0 ⋱ p6,5H6,5 mð Þ p6,4H6,4 mð Þ
0 0 0 0 0 1� p5,4H5,4 mð Þ p5,4H5,4 mð Þ
0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(20)

where pij represents the probability for the embedded Markov chain of the semi-
Markov process, and Hij represents the cumulative distribution of the sojourn time
between condition state i and condition state j at time m.

It can be seen by 3.2.1 that as the number of years, m, increases, a number of
permutations must be considered when computing the overall transition probabilities
for an interval 0, nð Þ, and so another approach is suggested to model the overall
transition over time. In the context of modeling asset deterioration, the focus is on ‘do-
nothing’scenarios, where there is no action taken on the infrastructure. It therefore can
be assumed that once the infrastructure exits a condition state, that condition state is
not visited again, and the semi-Markov process occurs in one direction only. There is
also the probability of the condition of some infrastructure, in this case the pavement
segments, ‘skipping’ condition states in a single transition, however the probability of
‘skipping’ two (2) or more condition states is extremely small and therefore may not
have to be considered. If it is assumed that only one condition state may be ‘skipped’ in
a single transition, then the transition probability (for the embedded Markov chain),
pij, of ‘skipping’ a condition state, k, is one minus the transition probability (for the
embedded Markov chain) of transitioning to the next state, pik. Therefore,

pij ¼ 1� pik i ¼ 10,9,8,7,6,5; j ¼ i� 2, k ¼ i� 1, min j, kð Þ ¼ 4 (21)

This is because the total probability of eventually leaving a particular condition
state (which is not a terminal state), to a lower condition state is 1, since deterioration
is being considered.

Another assumption is that the sojourn time in condition state i before
transitioning to j is the time from the pavement segment first entered condition state i
to the time the pavement segment first entered condition state j. The transition
diagram shown in Figure 1 shows the possible ‘single step’ transitions in developing

Figure 1.
Transition diagram that represents the possible ‘single step’ transitions between condition states.
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the semi-Markov model, where pij is the probability for the embedded Markov chain
from condition state i to condition state j, and hij mð Þ is the probability density function
of the sojourn time between condition state i and condition state j at time m. The term
‘single step’ transition is based on the assumption that only a single transition can take
place in a year. For the transition labeled p10,9h10,9 mð Þ the pavement segment spends
some time in condition state 10 before transitioning to condition state 9, and for the
transition labeled p10,8h10,8 mð Þ the pavement segment spends some time in condition
state 10 before transitioning to condition state 8 without going to 9 [13].

Other than determining the interval transition probabilities for the interval 0, nð Þ,
the conditional transition probabilities for each yearly interval for m ¼ 1, 2, … , n is
determined, which is multiplied by each other to estimate the transition probabilities
for the interval 0, nð Þ. It is also assumed that only a single transition takes place in a
year. In other words, let

Φ0,n nð Þ ¼ Φ0,1 �Φ1,2 � …Φn�1,n (22)

where Φm�1,m is a 1 year ‘single’ transition probability matrix for the time m� 1 to
m (i.e.mth interval), m ¼ 1, 2, … , n. Based on Eq. (20), if the condition states can drop
by either one (1) or two (2) states, then the interval transition probability for the first
year results to:

Φ mð Þ ¼

1�P9
j¼8p10,jH10,j mð Þ p10,9H10,9 mð Þ p10,8H10,8 mð Þ 0 0 0 0

0 ⋱ … … 0 0 0

0 0 ⋱ … … 0 0

0 0 0 ⋱ … … 0

0 0 0 0 ⋱ … …

0 0 0 0 0 ⋱ …

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(23)

wherem ¼ 1. On the other hand, to determine the respective transition probability
matrices for the subsequent intervals, a different formulation is used, in which it is
assumed that the sojourn time is left truncated at the start of each interval.

3.2.2 Service life analysis and left truncation

Statistical analyses of the service lives of transportation infrastructures can be done
using Reliability Theory otherwise called Survival Analysis. In Survival Analysis, some-
times subjects are selected and followed prospectively until the event or censoring
occurs, but sometimes the start time at the point of selection is not t ¼ 0 (i.e. not at
birth), but at a value t ¼ t0 >0. It therefore means that the life or censoring time of the
subjects, Ti, is greater than t0 [21, 22], and the life Ti is considered to be left truncated at
t0. Applying the same principle to the service life of a transportation infrastructure then,

FT∣T > t0 tð Þ ¼
0 if t0 ≥ t;
FT tð Þ � FT t0ð Þ
1� FT t0ð Þ if t0 < t:

8<
: (24)
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To determine the probabilities that are associated with the sojourn time for interval
1, 2ð �, we assume that from Eq. (24) t0 ¼ 1 and 1< t≤ 2. It therefore means that at this
point only sojourn times greater than t ¼ 1 are being considered and the cumulative
distribution of the sojourn time in the interval can be considered truncated [22]. It is
therefore can be described as:

Hi,jT∣T > 1
tð Þ ¼ Hi,jT tð Þ �Hi,jT 1ð Þ

1�Hi,jT 1ð Þ , 1< t≤ 2 (25)

It follows that for interval m� 1,mð � the cumulative distribution of the sojourn
time in the interval can be described as:

Hi,jT∣T >m�1
tð Þ ¼ Hi,jT tð Þ �Hi,jT m� 1ð Þ

1�Hi,jT m� 1ð Þ , m� 1< t≤m (26)

At t ¼ m the cumulative distribution of the sojourn time then becomes

Hi,jT∣T >m�1
mð Þ ¼ Hi,jT mð Þ �Hi,jT m� 1ð Þ

1�Hi,jT m� 1ð Þ , m� 1< t≤m (27)

Therefore, the transition probability for interval m� 1,mð � is:

Φm�1,m mð Þ ¼

1�P9
j¼8p10,jH10,jTjT >m�1

mð Þ p10,9H10,9TjT >m�1 mð Þ … 0 0 0 0
0 ⋱ … … 0 0 0

0 0 ⋱ … … 0 0

0 0 0 ⋱ … … 0

0 0 0 0 ⋱ … …

0 0 0 0 0 ⋱ …

0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(28)

Eq. (27) have been used to determine the transition probabilities for one-step state-
based yearly transitions in deterioration models by Black et al. [11, 12], for which the
transition probability of the embedded Markov chain was assumed to be 1. It therefore
means that the probability obtained using Eq. (27) can be used to describe the proba-
bility associated with the sojourn time to the end of the period, given that it had
‘survived’ up to the start of the period.

3.2.3 Sojourn times of flexible pavement condition states

For developing the semi-Markov model, the number of miles for a particular
segment can be rounded to the nearest one-tenth of a mile and the sojourn time
distribution for each one-tenth unit of a mile of pavement segment is then
analyzed. Figure 2 gives a schematic of how the pavement segment can be
divided into one-tenth of a mile sub-sections. An algorithm can be created and used
to help organize and analyze the data on the infrastructure to estimate the
parameters of the sojourn time distributions in each condition state. The following
outlines the steps:
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1.The length of each segment to the nearest one-tenth of a mile is determined.

2.The yearly decreases in CRKs for each segment subsequent to the year being
newly constructed or overlaid is extracted, such that a series of decreasing CRKs
for each segment can be used to model ‘do-nothing’ actions on the pavement
segments over time.

3.The pavement segments are assigned to condition states over time, in accordance
with Table 1, as outlined earlier.

4.At some point in time, all the pavement segments tracked, are either just
becoming ‘new’ or entered the current condition state from a higher or equal
condition state. If a unit of pavement segment exits a particular condition state to
a lower condition state at a known time, then the sojourn time of that unit of
pavement segment in the current condition state is essentially known. However,
if a unit of pavement segment is in a particular condition state and the tracking of
the pavement ended because the condition state either increased or the because
the ‘study’ was terminated, then the sojourn time of that unit of pavement
segment is not precisely known and is considered right-censored [23]. Figure 3
gives a representation of the change in the condition states of pavement
segments over time, outlining examples of complete and censored times spent in
particular condition states.

5.Based on the complete and censored durations obtained from the data, the
distribution of the sojourn time in condition state i before transitioning to
condition state j (Hi,j tð Þ) can be determined, where j is either i� 1 or i� 2,
i ¼ 10,9,8,7,6,5 min jð Þ ¼ 4. The proportion of the number of units of the

Figure 2.
Schematic of pavement segment divisions into equal units of one-tenth of a mile.

Figure 3.
An example of the change in the condition states of pavement segments over time.

9

The Application of Markov and Semi-Markov Models in Transportation Infrastructure…
DOI: http://dx.doi.org/10.5772/intechopen.1001134



infrastructure that left condition state i and transitioned to condition state j, to
the total number of units of assets that left condition state i and transitioned to all
condition states other than itself (pi,j) can be determined, for each condition state
i. From Figure 3, one can see that segment 3 spends 6 years in condition state 10,
has a one state drop and then spends 7 years in condition state 9, and then has
another one state drop to condition state 8. It shows that segment 3 then spends
1 year in condition state 8, before transitioning to condition state 7, where the
pavement segment spent at least 6 years in condition state 7. In Figure 3, for
segment 4, it is seen that the segment spends 10 years in condition state 10
before having a two-state drop to condition state 8, followed by a series of one
state drops for which the respective sojourn times can also be inferred.

The maximum likelihood estimate of the scale (α) and shape (β) parameters of the
Weibull distribution, used to describe the sojourn time distributions, can be com-
puted. An algorithm can be written to determine the series of transition probability
matrices, based on the Weibull parameters (α and β values) obtained for the sojourn
times between condition states. The MLE of the α and β values serves as inputs for this
algorithm. The transition probabilities according to Eqs. (23) and (28) can then be
determined and used to simulate the survival curves and the expected deterioration
over time.

4. Examples of transition probabilities associated with the Markov chain
and semi-Markov models

4.1 Transition probabilities in a Markov chain model

An example of a set of transition probabilities for a Markov chain model are
represented as a transition probability matrix, as shown below in Eq. (29). At the left
and top of the transition probability matrix in Eq. (29) are the condition states i and j
respectively, where Πij is transition probability matrix used for a Markov chain model.

10 9 8 7 6 5 4

Πij ¼

10

9

8

7

6

5

4

0:905 0:072 0:017 0:006 0 0 0

0 0:737 0:157 0:090 0:016 0 0

0 0 0:660 0:274 0:042 0:014 0:010

0 0 0 0:707 0:188 0:086 0:019

0 0 0 0 0:724 0:112 0:164

0 0 0 0 0 0:582 0:418

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(29)

4.2 Transition probabilities in a semi-Markov model

An example of the transition probability of the embedded Markov chain of a semi-
Markov process are shown for each transition in Table 2.

10

Markov Model – Theory and Applications



Figures 4–7 show examples of the frequency distributions of the observed sojourn
time for each unit mile before transition, including both the uncensored and right-
censored sojourn times.

From Figures 4 and 5 it can be seen that there are more units of pavement that
transitioned completely from condition state 10 to 9, than from 10 to 8, which is
expected. The total pavement length that are right-censored in Figures 4 and 5 are the
same. This is because it is not known whether each unit of pavement would have
transitioned from condition state 10 to 9 or from 10 to 8.

Based on the Maximum Likelihood Estimation (MLE), examples of the Weibull
distribution parameters are shown in Table 3, while the associated uncertainties are

Transitions i to j Transition probability

10 to 9 0.707

9 to 8 0.752

8 to 7 0.645

7 to 6 0.468

6 to 5 0.214

5 to 4 1.000

10 to 8 0.293

9 to 7 0.248

8 to 6 0.355

7 to 5 0.532

6 to 4 0.786

Table 2.
Transition probabilities of the embedded Markov chain of the semi-Markov process.

Figure 4.
Frequency of sojourn times in condition state 10 before transitioning to 9.
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Figure 5.
Frequency of sojourn times in condition state 10 before transitioning to 8.

Figure 6.
Frequency of sojourn times in condition state 9 before transitioning to 8.

Figure 7.
Frequency of sojourn times in condition state 9 before transitioning to 7.
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illustrated in Table 4. The 95% C.I. limits of the scale and shape parameters are shown
in Table 3. Table 4 provides the means and standard deviations for each sojourn time
(Weibull) distribution. The standard deviations for the sojourn time in condition state 8
before transitioning to 6, and that of condition state 7 before transitioning to 5
seems relatively high in comparison to the others, which is a function of the quantity of
data representing each transition. As more data for each transition becomes available,
then the standard deviations associated with the particular transition is expected to
be less. A Goodness-of-fit test can also be done on the distribution of the complete
sojourn times.

Transition i to j α̂ 95% C.I. limits for α̂ β̂ 95% C.I. limits for β̂

Lower Upper Lower Upper

10 to 9 9.432 9.332 9.533 2.128 2.094 2.163

9 to 8 4.887 4.777 4.999 1.579 1.539 1.62

8 to 7 3.496 3.394 3.602 1.345 1.304 1.387

7 to 6 5.039 4.811 5.278 1.257 1.208 1.308

6 to 5 6.304 5.754 6.906 1.523 1.412 1.641

5 to 4 3.164 3.03 3.304 2.062 1.94 2.193

10 to 8 13.126 12.904 13.351 3.182 3.088 3.278

9 to 7 6.103 5.845 6.372 1.249 1.204 1.295

8 to 6 9.672 8.744 10.697 1.465 1.35 1.591

7 to 5 9.103 8.355 9.918 1.236 1.165 1.312

6 to 4 5.417 5.092 5.763 1.693 1.591 1.802

Table 3.
Example of the maximum likelihood estimation of the scale (α) and shape (β) parameters for the holding time
(Weibull) distributions in condition state i.

Transitions i to j Mean (years) Standard deviation

10 to 9 8.35 4.13

9 to 8 4.39 2.84

8 to 7 3.21 2.41

7 to 6 4.69 3.75

6 to 5 5.68 3.80

5 to 4 2.80 1.43

10 to 8 11.75 4.05

9 to 7 5.69 4.58

8 to 6 8.76 6.08

7 to 5 8.50 6.91

6 to 4 4.84 2.94

Table 4.
Means and standard deviations of sojourn times (Weibull).
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As an example, the transition probability matrices of the first 5 years for the semi-
Markov model are shown in Eqs. (30)–(34). In Eq. (30), ϕ10,10 ¼ 0:991 means that
there is a 0.991 probability that the pavement segment remains in condition state 10.
The other ϕi,j terms represent the probability of transition from i to j in a given year.

Year 1

10 9 8 7 6 5 4

Φij 1ð Þ ¼

10

9

8

7

6

5

4

0:991 0:008 0:001 0 0 0 0

0 0:822 0:078 0:100 0 0 0

0 0 0:795 0:170 0:035 0 0

0 0 0 0:814 0:123 0:063 0

0 0 0 0 0:886 0:059 0:056

0 0 0 0 0 0:911 0:089

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(30)

Year 2

10 9 8 7 6 5 4

Φij 2ð Þ ¼

10

9

8

7

6

5

4

0:970 0:028 0:002 0 0 0 0

0 0:716 0:150 0:134 0 0 0

0 0 0:690 0:249 0:061 0 0

0 0 0 0:749 0:166 0:085 0

0 0 0 0 0:773 0:107 0:120

0 0 0 0 0 0:744 0:256

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(31)

Year 3

10 9 8 7 6 5 4

Φij 3ð Þ ¼

10

9

8

7

6

5

4

0:944 0:049 0:007 0 0 0 0

0 0:652 0:197 0:151 0 0 0

0 0 0:633 0:290 0:077 0 0

0 0 0 0:717 0:188 0:095 0

0 0 0 0 0:695 0:138 0:167

0 0 0 0 0 0:602 0:398

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(32)
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Year 4

10 9 8 7 6 5 4

Φij 4ð Þ ¼

10

9

8

7

6

5

4

0:915 0:071 0:014 0 0 0 0

0 0:603 0:234 0:163 0 0 0

0 0 0:591 0:319 0:090 0 0

0 0 0 0:694 0:203 0:103 0

0 0 0 0 0:631 0:163 0:206

0 0 0 0 0 0:484 0:516

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(33)

Year 5

10 9 8 7 6 5 4

Φij 5ð Þ ¼

10

9

8

7

6

5

4

0:883 0:093 0:024 0 0 0 0

0 0:562 0:265 0:173 0 0 0

0 0 0:557 0:343 0:100 0 0

0 0 0 0:676 0:215 0:109 0

0 0 0 0 0:577 0:183 0:240

0 0 0 0 0 0:388 0:612

0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:
(34)

5. Stochastic preservation model

This section outlines a stochastic preservation model based on bridge elements.
The model can be used for transportation infrastructure management, in which the
underlining decision model is based on a semi-Markov decision process (SMDP). The
“Bare Concrete Deck” is an example of a bridge element that has different condition
states to which the preservation model can be applied in a Bridge Management Sys-
tem. The preservation model is adaptive and this concept has been used by researchers
in the field of infrastructure management, particularly as it relates to pavement and
rail infrastructures [24–27]. Madanat et al. [27] also describes the methodology used in
the Pontis® Bridge Management System as being adaptive, since transition probabili-
ties are updated over time. The methodology outlined here is based on the application
of SMDP.

The maintenance activities on a bridge element can encompass a wide range of
types of work having varying durations. Again, the Weibull distribution can be
assumed to estimate the sojourn time, which in this case, is the time it takes for
maintenance actions to be completed. Unlike the ‘do-nothing’ action, it is assumed
that the sojourn times for maintenance activities are irrespective of the current and
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subsequent condition states of the bridge element. It can also be assumed that
rehabilitation works predominantly encompass the replacement of the respective
bridge element, which has a more predictable duration time than that of
maintenance works. The time taken for improvement (maintenance and
rehabilitation) works to be completed, can be interpreted to start from the point at
which the problem to the bridge element was first identified, including the time for
the required works to be sent out for bid if necessary, followed by the time taken to
undertake the works.

5.1 Network level optimization

One of the main goals of a Bridge Management System (BMS) is to be able to
determine the minimum-cost long-term policy for each bridge element [28]. This
policy consists of a set of recommended actions that minimizes the long-term Main-
tenance, Repair and Rehabilitation (MR&R) cost requirements, while keeping the
bridge element out of risk of failure. If the minimum-cost long-term policy can be
determined, it represents the most cost-efficient set of actions for the bridge element.
Therefore, if any of the actions are delayed, it results in more expense in the long-
term. Also, if more improvement actions other than what is recommended are done,
then it will also result in higher costs in the long-term. This is based on the steady state
concept. Bridge elements are expected to remain in service for long periods of time
providing transportation connectivity on a continuous basis. Having an optimal policy
that is sustainable far into the future is of great importance. In a BMS the following
three (3) things typically takes place each year: (1) Bridge elements deteriorate when
no improvement actions are done to them, otherwise called ‘do-nothing’ actions; (2)
Improvement actions are done to some of the bridge elements, which results in
corresponding costs; and (3) The improvement actions cause an overall improvement
in network conditions [13].

At the network level, any given condition state will have elements passing in and
out of condition states based on the MR&R actions. For steady state to occur across
the entire bridge network or across a subset of that network, the total quantity of
bridge element entering a particular condition state is equal to the total quantity of
that similar bridge element leaving that same condition state. As a result the distribu-
tion of a bridge element among its condition state remains constant from year to year
within the group, and the policy becomes sustainable over the long-term [28]. The
optimal policy is the one policy that satisfies the requirements of a steady state and
consequently minimizes annual expenditure of the transportation agency in charge of
MR&R works.

The Markov Decision Process MDP have been used in the Pontis Bridge
Management System to determine the optimal policy, in which there is a means to
update the transition probabilities over time or as needed. This is because a
Markov chain model assumes that the sojourn time in one state before transitioning
to another follows an exponential distribution for continuous time, thus making it
more restrictive than the semi-Markov process in which the sojourn times can be
assumed to follow a different distribution, such as the Weibull distribution. The
SMDP facilitates the natural updating or changing of the transition probabilities over
time. Again, it is assumed that the sojourn time in a particular condition state
follows the Weibull distribution, and the deterioration process can be represented as a
semi-Markov process. The probability density function (pdf) for the Weibull distri-
bution is [29]:
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f tð Þ ¼ β

α

t
α

� �β�1
e�

t
αð Þβ (35)

where α and are the scale and shape parameters respectively. When the shape
parameter equals 1, the resulting distribution becomes exponential, and the rate
deterioration is constant. If the shape parameter is greater than 1, it means that the
rate of deterioration increases with time, and if the shape parameter is less than 1, the
rate of deterioration decreases with time. Typically, the latter is not expected for
transportation infrastructure.

One component of the preservation model for bridge elements is the deterioration
model similar to that explained above, where the Maximum Likelihood Estimation of the
parameters of the Weibull distribution, used to describe the sojourn time in one condi-
tion state before transitioning to a lower condition state, is determined. A similar
approach can be used to determine the sojourn time distribution for maintenance works.

5.2 Discount coefficient

Let us consider continuous-time discounting at a rate s>0, such that the present
value of one unit received t times units in the future equals e�st. For discounting over 1
year, let t ¼ 1, therefore, e�s ¼ d, where d represents corresponding discrete-time
discount rate that would be used in a MDP. So, for example, d ¼ 0:9 in the MDP
corresponds to s ¼ � log 0:9ð Þ ¼ 0:105 in the SMDP, which is the corresponding dis-
count factor based on continuous-time [30].

5.3 The Laplace transform (s-transform)

When taking into consideration the discounting for continuous-time in the SMDP
model, the Laplace transform (s-transform) of the distribution of the sojourn times
between states has to be computed [19]. It is therefore prudent to look at Laplace
transform. Now, if is the pdf of a continuous random variable X that takes only non-
negative values; then f X xð Þ ¼ 0 for x<0. It follows that the Laplace transform of
f X xð Þ, denoted by Mx sð Þ is [19]:

Mx sð Þ ¼ E e�sX� � ¼ ð∞
0
e�sxf x xð Þdx (36)

An essential Laplace transform property is that when it is evaluated at s = 0, its
value is equal to 1:

Mx sð Þjs¼0 ¼
ð∞
0
f x xð Þdx ¼ 1 (37)

The Laplace transform of the Weibull distribution can be complex, as shown in
Eq. (38) [31].

E e�tX� � ¼ 1
λktk

pk
ffiffiffiffiffiffiffiffi
q=p

p
ffiffiffiffiffi
2π

p� �qþp�2 G
q,p
p,q

1� k
p

,
2� k
p

, … ,
p� k
p

0
q
,
1
q
, … ,

q� 1
q

j pp

qλktk
� �q

0
BB@

1
CCA (38)
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where G is known as the Meijer G-function.
As a result, it may have to be solved numerically. The numerical solutions are

determined by substituting the scale and shape (Weibull) parameter estimates and the
continuous-time discount rate, s, into the expression provided in Eq. (39).

Mx sð Þ ¼ E e�sX� � ¼ ð∞
0
e�sx � β

α

t
α

� �β�1
e�

t
αð Þβdx (39)

For the case of when the bridge element condition is in the terminal state, mathe-
matically, it can be assumed that the bridge element spends 1 year in that state before
‘transitioning’ back into the terminal state. When a particular transition takes 1 year
every time, then the equivalent to the Laplace transform in this scenario is provided
by Eq. (40) [30]:

Mx sð Þ ¼ E e�sX� � ¼ e�s (40)

5.4 Semi-Markov decision process with discounting

The computation of the present values based on the SMDP is provided by the
following formulation [19, 20]:

vi a, λð Þ ¼ ri a, λð Þ þ
XN
j¼1

pij að Þ
ð∞
τ¼0

vj a, λð Þe�λτf Hij
τ, að Þdτ i ¼ 1, … ,N (41)

where, vi a, λð Þ = total expected long-term discounted cost; i = the condition state of
a bridge element; a = set of feasible MR&R actions for condition state i; ri a, λð Þ = the
expected cost for an MR&R action a in condition state i; λ = the continuous-time
discount factor; pij að Þ = the transition probability of the embedded Markov chain that
the bridge element will transition from condition state i to condition state j after action
a is taken; f Hij

is the probability density function of the sojourn time, τ, from condition

state i to condition state j, when action a is taken. Therefore,

vi a, λð Þ ¼ ri a, λð Þ þ
XN
j¼1

pij að ÞMH
ij a, λð Þvj a, λð Þ (42)

where MH
ij a, λð Þ is the Laplace transform (s-transform) of f Hij

τ, að Þ evaluated at

s ¼ λ, and transition probability matrix, Pi,j is given by,

Pi,j að Þ ¼

p1,1 að Þ p1,2 að Þ … … p1,N að Þ
p2,1 að Þ p2,2 að Þ … … p2,N að Þ
… … … … …

pN�1,1 að Þ pN�1,2 að Þ … … pN�1,N að Þ
pN,1 að Þ pN,2 að Þ … … pN,N að Þ

2
6666664

3
7777775

(43)

If we let

qij a, λð Þ ¼ pij að ÞMH
ij a, λð Þ (44)
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we obtain

vi a, λð Þ ¼ ri a, λð Þ þ
XN
j¼1

qi a, λð Þvj a, λð Þ i ¼ 1, … ,N: (45)

According to [19], the long-term value for ri a, λð Þ is given by

¼ Bi að Þ þ
XN
j¼1

pij

ð∞
τ¼0

ðt
x¼0

e�λxbij x, að Þf Hij
τ, að Þdxdτ (46)

where Bi að Þ is the immediate cost and is determined by

Bi að Þ ¼
XN
j¼1

pij að ÞBij að Þ i ¼ 1, … ,N Bij að Þ<∞ (47)

Mathematically, the second term in Eq. (46) represents the sum of the costs that
accumulates at the rate per unit time until the transition to state j occurs, bij x, að Þ<∞.
For the SMDP model, it is assumed that only ‘immediate’ costs are incurred when
there is a transition from one condition state to another. It can therefore be assumed
that the second term in Eq. (46) equals zero. Expressing Eq. (45) in a matrix form, we
have [19]:

V a, λð Þ ¼ v1 a, λð Þ v að , λÞ … v a, λÞð �T
h

(48)

R a, λð Þ ¼ V a, λð Þ ¼ r1 a, λð Þ r2 a, λð Þ … rN a, λð Þ½ �T (49)

Q a, λð Þ ¼

q1,1 a, λð Þ q1,2 a, λð Þ … q1,N a, λð Þ
q2,1 a, λð Þ q2,2 a, λð Þ … q2,N a, λð Þ

… … … …

qN,1 a, λð Þ qN,2 a, λð Þ … qN,N a, λð Þ

2
6664

3
7775
T

(50)

Based on Eq. (45), considering steady state conditions,

V a, λð Þ ¼ R a, λð Þ þ Q a, λð ÞV a, λð Þ (51)

then,

V a, λð Þ ¼ I � Q a, λð Þ½ ��1R a, λð Þ (52)

As a result, there is a Q a, λð Þ that gives the minimum long-term cost, which is
based on an optimum policy. The minimum long-term cost is defined by Ibe [19] as:

v ∗
i ¼ min ri a, λð Þ þ

XN
j¼1

qij að , λÞv ∗
j a, λÞð g i ¼ 1, … ,N

(
(53)

5.5 Do-nothing action (action ‘d’)

As mentioned before, for ‘do-nothing’ actions (ad) it can be assumed that the
sojourn time in a condition state before transition, follows a Weibull distribution,
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except when sojourning in the terminal state. Using Eq. (39), the numerical solution
for the Laplace of the Weibull distribution for each scenario, except failure, can be
determined. Let:

MH
ij ad, λð Þ ¼ L f ∞, adjαij, βij

� �n o
i, j ¼ 1, … ,NS (54)

where NS represents the number of states, not including the terminal state.
The terminal state can be referred to an absorption condition state or the point at
which the bridge element has come to the end of its useful life. In other words,
when considering the ‘do-nothing’ action on a bridge element, once the condition
state enters the terminal state, it will remain in that state unless rehabilitated. It
follows that,

MH
ij ad, λð Þ ¼ e�s ¼ e�λ s ¼ λ; i ¼ j ¼ F (55)

where F represents the terminal state. From Eqs. (44), (50) and (54),

Q ad, λð Þ ¼

p1,1 � L f ∞, adjα1,1, β1,1
� �
 �

… … p1,F � L f ∞, adjα1,F, β1,F
� �
 �

⋮ … … ⋮

pF,1 � L f ∞, adjαF,1, βF,1
� �
 �

… … pF,F � L f ∞, adjαF,F, βF,F
� �
 �

0 0 0 e�λ

2
666664

3
777775

(56)

where ad represents ‘do-nothing’ action.
It can be assumed that the deterioration of bridge elements is a one-step

process, and the bridge element can only drop by one condition state at a given point
in time. In other words, a bridge element in a particular condition state will eventually
transition to the next lower condition state when there are no other actions on that
element other than ‘do-nothing’ actions. It can also assumed that for ‘do-nothing’
actions, once the condition of the bridge element exits a condition state, that condition
state will not be visited again. The transition probability for the embedded Markov
chain of the semi-Markov process, pij, for ‘do-nothing’ action is therefore assumed
to be 1 between the current and succeeding condition states, and for the terminal
state. Therefore, for the bridge element that has five (5) condition states plus the
terminal state,

Pi,j adð Þ ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

2
66666666664

3
77777777775

(57)

and so Eq. (56) can be simplified to:
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Q ad, λð Þ ¼

0 L f ∞, adjα1,2, β1,2
� �
 �

0 0 0 0

0 0 L f ∞, adjα2,3, β2,3
� �
 �

0 0 0

0 0 0 ⋱ 0 0

0 0 0 0 ⋱ 0

0 0 0 0 0 L f ∞, adjα5,F, β5,F
� �
 �

0 0 0 0 0 e�λ

2
666666664

3
777777775

(58)

5.6 Maintenance action (action ‘m’)

For the maintenance action (am) the sojourn time distribution can also be Weibull.
Each time a maintenance action is done it may affect the condition of each bridge
element in the network differently. In other words, the same maintenance action may
result in the condition state of a bridge element to either increase, stay the same or
decrease at a slower rate than it would have performed if the action was not done. To
estimate the transition probability of the embedded Markov chain due to the mainte-
nance action, one can observe the changes that take place in a sample of bridge
elements to which the maintenance action was done. To achieve this, the method of
least squares using matrices computation can be used to determine the expected
transition probability matrix between pairs of observations [32]. Consider Eq. (59):

x1 … xF
⋮ … ⋮
x ∗
1 … x ∗

F

2
64

3
75:

p1,1 amð Þ … p1,F amð Þ
⋮ … ⋮

pF,1 amð Þ … pF,F amð Þ

2
64

3
75 ¼

y1 … yF
⋮ … ⋮
y ∗1 … y ∗F

2
64

3
75 (59)

in which each row of xi’s are the proportions of bridge element (in each state) in
condition state i before the maintenance action, am; each row of yi’s are the propor-
tions of the same bridge element in condition state i after the maintenance action, am,
for i ¼ 1, 2, … NS, F. Each row of the respective matrices with the xi’s and yi’s values
represents a different inspection record of a particular bridge element. If the xi’s and
yi’s are known for a sample of the same type of bridge element, then the transition
probability matrix representing action am can be computed using the method of least
squares by matrices computations, using Eq. (60). The closest pair of inspection dates
before and after a maintenance action can be used to capture the pairs of records
having the respective condition states.

Pi,j amð Þ ¼ XTX
� ��1

XTY
� �

(60)

The resulting transition matrix does not take into consideration the uncertainties
as it relates to the time it takes for the maintenance works to be undertaken, which can
be described by the distribution of the sojourn time in each condition state. The
sojourn time distribution for the maintenance action can also be assumed to follow a
Weibull distribution. Using Eq. (39), the numerical solution for the Laplace of the
Weibull distribution of the sojourn times irrespective of the current and subsequent
condition states can be determined for NS states, excluding the terminal state. Since
the solutions for NS states are numerical and the scale (α) and shape (β) estimates are
not state specific, then the Laplace of the Weibull distribution for each i, j is
represented by:
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MH
ij am, λð Þ ¼ L f ∞, αmjα, βð Þf g for condition states 1, … ,NS (61)

where NS represents the number of states, except the terminal state. Eq. (55) can be
used to determine qF,F am, λð Þ. For a five (5) condition state (plus terminal state) element,

Q am, λð Þ ¼

p1,1 � L f ∞, amjα, βð Þf g … … … … p1,F � L f ∞, amjα, βð Þf g
p2,1 � L f ∞, amjα, βð Þf g … … … … p2,F � L f ∞, amjα, βð Þf g
p3,1 � L f ∞, amjα, βð Þf g … … … … p3,F � L f ∞, amjα, βð Þf g
p4,1 � L f ∞, amjα, βð Þf g … … … … p4,F � L f ∞, amjα, βð Þf g
p5,1 � L f ∞, amjα, βð Þf g … … … … p5,F � L f ∞, amjα, βð Þf g

0 0 0 0 0 e�λ

2
666666664

3
777777775

(62)

5.7 Rehabilitation action (action ‘r’)

The duration of particular rehabilitation actions can be determined if sufficient
data is available on these rehabilitation projects. If this information is not available,
the duration between the two (2) closest inspections prior to the start and subsequent
to the completion of the rehabilitation action can be used as an estimate of the
duration of the rehabilitation action. The latter was done in this case, assuming two
(2) years for the sojourn time. The transition probability of the embedded Markov
chain for the rehabilitation action can be assumed to be fixed in which the condition
state of the bridge element reverts to 1. As such, the transition probability for the
embedded Markov chain of the semi-Markov process, pij, for rehabilitation action for
a five (5) condition state element (plus terminal state) can be represented as:

Pi,j arð Þ ¼

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2
666666664

3
777777775

(63)

Based on Eqs. (40), (44) and (50),

Q ar, λð Þ ¼

e�2λ 0 0 0

e�2λ 0 0 0

e�2λ 0 0 0

e�2λ 0 0 0

e�2λ 0 0 0

e�2λ 0 0 0

2
666666664

3
777777775

(64)

6. Conclusions

This chapter outlined feasible approaches that demonstrate how the condition of
transportation infrastructure can be used to develop Markov and semi-Markov
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deterioration models that are able to model network level performance when no
actions are done to the infrastructure. The use of semi-Markov processes to model
deterioration relaxes the assumption of the distribution of the sojourn time in condi-
tion states for ‘do-nothing’ actions and is therefore less restrictive than Markov chain
deterioration models. A preservation model for transportation infrastructure using
Semi-Markov Decision Processes was presented. The objective of the preservation
model is to determine the minimum long-term costs for the preservation of a trans-
portation infrastructure within a group or network of similar infrastructure. The main
‘inputs’ for the preservation model are: (a) the scale and shape parameter estimates of
the Weibull distribution used to describe ‘do-nothing’ actions, and (b) the transition
probabilities of the embedded Markov chain and the scale and shape parameter
estimates of the Weibull distribution for maintenance actions. If there is sufficient
data available, the use of the Semi-Markov Decision Process is a useful tool to use for
modeling Transportation Infrastructure preservation.
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Nomenclature

CRK Crack Index
NS number of states

Abbreviations

PMS Pavement Management System
ADOT Arizona Department of Transportation
NOS Network Optimization System
MLE Maximum Likelihood Estimation
iid identical and independent distributed
pdf probability density function
pmf probability mass function
MDP Markov Decision Process
SMDP Semi-Markov Decision Process
BMS Bridge Management System
MR&R maintenance, repair and rehabilitation
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