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Abstract

Nosocomial infections caused by carbapenem-resistant Acinetobacter baumannii 
(CRAB) have become a global concern. The extensive antibiotic resistance of CRAB 
has significantly limited treatment options, while its prevalence in hospital outbreaks 
has amplified infection rates. This scenario has led to a resurgence of interest in 
polymyxins, an older class of antibiotics previously overlooked due to perceived 
toxicity. Polymyxins, cationic polypeptide antibiotics, now represent a last-resort 
treatment option. Despite their historical use, modern assessment methods have only 
recently been applied to evaluate polymyxins. Two polymyxins are available for clini-
cal use: polymyxin B and colistin (polymyxin E). Notably, the administration of these 
drugs is hindered by toxicities, primarily nephrotoxicity and neurotoxicity, alongside 
less common adverse effects such as injection pain, hypersensitivity reactions, and 
bronchospasms.
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1. Introduction

Antimicrobial resistance (AMR) has escalated into a global healthcare crisis, 
rendering many pathogens resistant to current treatments [1]. A comprehensive 
analysis estimated 1.27 million deaths attributable to bacterial AMR in 2019 [2], and 
projections indicate that 2050 annual AMR-related deaths could reach ten million [3].

Over the past three decades, Acinetobacter baumannii has emerged as a formidable 
healthcare challenge, particularly due to multidrug-resistant (MDR) strains, resistant 
even to carbapenems [4, 5]. MDR rates for A. baumannii surpass those of other noso-
comial pathogens [6]. A. baumannii, a Gram-negative non-fermentative coccobacillus 
of the Moraxellacecae family, thrives in healthcare settings owing to its antibiotic 
resistance and desiccation tolerance [7].

Managing A. baumannii infections is complex due to its diverse resistance mecha-
nisms, with carbapenem resistance (CR) being particularly concerning. The World 
Health Organization (WHO) classifies carbapenem-resistant A. baumannii (CRAB) 
as a critical priority, given its threat to human health [8]. During the SARS-CoV-2 
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pandemic, CRAB infections further complicated patient outcomes, with high resistance 
rates (91.2%) observed [9].

A significant subset of CRAB isolates is extensively drug-resistant (XDR; i.e., non- 
susceptible to ≥1 agent in all but ≤2 classes) or pan drug-resistant (PDR; i.e.,  
non-susceptible to all antimicrobial agents have been reported worldwide) [10–12], 
compounding the challenge. Limited effective antibiotic options against CRAB pose a 
substantial health challenge. Polymyxins, though previously overshadowed, regained 
prominence in the late 1990s due to their activity against carbapenem-resistant (CR) 
infections [13]. However, new-generation antimicrobials, particularly β-lactam/β-
lactamase inhibitors, have largely replaced polymyxins in CR Gram-negative bacterial 
infections. Conversely, polymyxins are vital for tackling resistant pathogens [13–15], 
especially where new agents are unavailable [16]. Nonetheless, they come with 
adverse effects, including allergic reactions, neurotoxicity, and nephrotoxicity [17].

2. Polymyxins

2.1 History of discovery

Polymyxins are cationic polypeptide antibiotics derived from Bacillus polymyxa, 
pivotal in treating carbapenem-resistant Gram-negative bacteria. The initial anti-
bacterial activity was reported in 1947 [18, 19], leading to the isolation of antibiotics 
named polymyxin [20] and aerosporin [18, 21]. Despite the structural similarity, they 
were classified as belonging to the same class [22–25]. Polymyxin B and polymyxin 
E (colistin) differ in a single amino acid (D-Phe replaces D-Leu) [26, 27] and are the 
clinical variants among over 15 known polymyxins [13–15, 28, 29]. These peptides 
share a cyclic ring structure with hydrophilic and hydrophobic components, enabling 
them to disrupt cell membranes [13, 29, 30].

2.2 Structure

Polymyxins’ structure resembles antimicrobial peptides deployed by eukaryotes 
against pathogens. They are natural non-ribosomal cyclic lipopeptides weighing 
around 1.2 kDa (Figure 1) and consist of a cyclic ring of amino acids with a tripeptide 
chain, which binds to the lipid part of the molecule. The decapeptide core of poly-
myxins contains an intramolecular loop of starch-linked heptapeptides between the 
amino group on the side chain of the aminobutyric acid (Dab) residue at position four 
and the carboxyl group on the C-terminal threonine residue. They also have several 
other distinctive structural features, including five non-proteogenic Dab residues 
positively charged at physiological pH, conserved hydrophobic residues at positions 6 
and 7, and an N-terminal acyl group [31]. The cationic peptide ring of these antibiot-
ics is the same between the two polymyxins, except for a single amino acid: a D-Leu 
from colistin is relocated by D-Phe to polymyxin B [14, 26, 27, 29–32]. However, the 
pharmacokinetics of polymyxin B and colistin differ notably due to the different 
pharmaceutical forms in which they are administered—active and prodrug form, 
respectively [33]. Its mechanisms of action occur through the rupture of the external 
and cytoplasmic membranes of the bacteria, causing loss of the contents of the cell’s 
interior [34]. Polymyxin B comprises at least four components and polymyxin B1 
to B4, which differ only in the portion containing fatty acids, polymyxin B1 and B2 
being in greater proportion [35].
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2.3 Mechanism of action

Polymyxins exert rapid bactericidal effects by interacting with lipopolysaccharides 
(LPS) in the bacterial outer membrane, inducing disruptions that compromise 
membrane integrity. LPS, a critical component of the bacterial outer membrane, 
encompasses the O antigen, polysaccharide core, and lipid A. The positive charge of 
the polymyxin ring facilitates its binding to the outer membrane’s lipid A, leading to 
the displacement of stabilizing Mg2 and Ca2 ions, which is crucial for LPS integrity 
[35]. The fatty acid side chains also engage with LPS, enabling the secure insertion 
of polymyxin into the outer membrane. This interaction triggers a series of detri-
mental effects, including changes in outer membrane permeability, leakage of cell 
contents, and eventual bacterial cell death [29, 36]. Beyond inducing cytoplasmic 
leakage, this binding may neutralize the biological properties of endotoxins [14, 29]. 
Multiple hypotheses and models exist to explain the various mechanisms underlying 
polymyxin’s bactericidal activity [13, 14, 29]. The principal pathways through which 
polymyxins exhibit their activity are shown in Figure 2.

2.4 Polymyxin resistance

The resistance of microorganisms to polymyxin remains incompletely understood, 
potentially arising from mutation or adaptation mechanisms [37, 38]. In most Gram-
negative bacteria, the PhoP/Q and PmrA/B regulatory systems are pivotal in mediat-
ing polymyxin resistance. These systems oversee mechanisms that induce chemical 
modifications in the structure of bacterial lipopolysaccharides (LPS) (Figure 3). 
In response to low levels of antimicrobial peptides, Mg+2 and Ca+2 ions, as well as 
other inducers such as low pH, excessive Fe+3, excessive Al+3, and phagosomes, 
these systems modulate resistance by altering the cationic charge of the cell wall. 
Cumulatively, these modifications reduce the negative charge of the bacterial outer 
membrane, resulting in a diminished affinity of polymyxin for the bacterial cell 
surface [29].

Modifying lipid A within the lipopolysaccharide (LPS) molecule, catalyzed by the 
gene products of pmrCAB and arnBCADTEF, is a fundamental mechanism underly-
ing bacterial resistance to polymyxin antibiotics. These gene products play a pivotal 

Figure 1. 
Cyclic lipopeptide structure of polymyxin B (1). Colistin (polymyxin E) features a substitution of one (D-Leu) 
with one (D-Phe) (2).
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role in altering the surface charge and permeability of the bacterial outer membrane 
(OM) [39–41].

In A. baumannii, resistance development is primarily associated with changes in 
the LPS biosynthesis pathway. Currently, two mechanisms of polymyxin resistance 

Figure 2. 
Mechanisms of antibacterial activity of polymyxins in gram-negative bacteria. Disruption of the outer 
membrane, vesicle-vesicle contact, inhibition of respiratory enzyme NDH-2, and hydroxyl radical formation. 
CoQ1, coenzyme Q1.

Figure 3. 
Mechanism of polymyxin resistance changes in LPS. The PhoQP two-component system triggers pmrD expression. 
PmrD activates PmrA, cptA pmr, and the am operon. Working alongside EptB, CptA brings about modifications 
in the core polysaccharide of LPS. The pmr and am products facilitate the substitution of lipid a phosphates by 
Petn and L-ara4N, respectively. These collective alterations influence the charge of the outer membrane, resulting 
in polymyxin repulsion.
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have been identified in A. baumannii. The initial mechanism involves the modifica-
tion of lipid A via phosphoethanolamine and/or galactosamine, orchestrated by the 
PmrAB two-component system. Mutations at single nucleotide levels or elevated 
expression of pmrA (response regulatory protein) or PmrB (histidine kinase sensor) 
trigger the upregulation of pmrC, subsequently activating the production of phos-
phoethanolamine transferase (PEtN). This enzyme alters lipid A structure [42–46]. 
Other genes influencing LPS biosynthesis and lipid A configuration have also been 
documented. Additionally, the involvement of efflux pumps in colistin resistance 
cannot be dismissed [47, 48].

Another A. baumannii polymyxin resistance mechanism involves the complete loss 
of LPS from the outer membrane, which stems from mutations or inactivation due to 
the insertion of the ISAba11 insertion sequence into the lpxA, lpxC, and lpxD genes. 
These genes encode enzymes accountable for the initial stages of polymyxin LPS 
biosynthesis [43, 44, 49].

Mutations within the gene responsible for glycosyltransferase, a component 
involved in LPS biosynthesis, have also been linked to polymyxin resistance [50, 51].  
According to current literature, both resistance mechanisms negate polymyxin-
triggered bacterial death by obstructing the interaction of polymyxins with OM. 
The mechanisms are governed by the pmrCAB operon (for lipid A modification with 
PEtN), naxD (for galactosamine modification), or the lpx biosynthetic cluster (for 
LPS loss) [42, 44–46].

The outer membrane lipoprotein VacJ is an integral part of the Vps-VacJ ABC 
transporter system, responsible for maintaining the presence of phospholipids and 
LPS within the outer membrane [52]. Mutations within the vacJ and pldA genes could 
contribute to A. baumannii’s colistin resistance due to their role in preserving the 
asymmetrical lipid distribution in the outer membrane [53]. In 2016, the discovery of 
the plasmid-borne mcr-1 gene marked the first instance of a colistin-resistant gene 
with horizontal transmission capability [54]. Unlike its predecessors, this gene can be 
disseminated via plasmids, expanding the reach of colistin resistance [55]. In subse-
quent years, the mcr-4.3 gene variant, carried by a plasmid, has also been identified 
[56–58]. Understanding the intricacies of polymyxin resistance mechanisms has 
become imperative for maintaining the effectiveness of this antibiotic until novel 
therapeutic alternatives are available. Nevertheless, assessing susceptibility to 
polymyxins remains a contentious issue as numerous laboratories do not employ the 
microdilution technique recommended for this evaluation [59].

2.5 Heteroresistence

Heteroresistance refers to the emergence of resistance to a specific antibiotic 
within a population initially sensitive to that antibiotic based on in vitro susceptibil-
ity test cutoff points [60]. Some studies describe this phenomenon without specify-
ing the antibiotic concentration range. In contrast, others identify heteroresistance 
when subpopulations of an isolate grow at concentrations exceeding minimum 
inhibitory concentration (MIC) values found in susceptibility tests yet still within 
the susceptibility range [61, 62]. This variability in definitions, detection methods, 
and prevalence complicates understanding of heteroresistance’s clinical significance 
[63]. This phenotype might represent a natural progression of antibiotic resistance, 
allowing bacteria to grow in the presence of antibiotics following resistance acquisi-
tion by most of the microbial population [63]. In 2006, Li et al. [61] first reported 
heteroresistance to colistin in multidrug-resistant A. baumannii isolates, defining it 
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as the emergence of resistance within a subpopulation of an otherwise susceptible 
(MIC ≤2 mg/L) group. Since then, this phenomenon has been widely observed, 
with prevalence ranging from 1.84–100% [64–66]. A related study showed higher 
heteroresistance in patients previously treated with colistin, suggesting prior colis-
tin therapy might induce heteroresistance [64]. Additionally, the synergistic activ-
ity of colistin has been compromised when tested in antimicrobial combinations 
against heteroresistant carbapenem-resistant A. baumannii strains [67]. Findings 
regarding resistance stability within surviving subpopulations under nonselective 
conditions have varied across studies, implying a potential species-specific influ-
ence [60, 61, 64, 68]. Under colistin exposure, a subset of cells becomes colistin-
dependent for optimal growth, indicating an adaptive response to colistin pressure 
and an intermediate stage between susceptibility or heteroresistance and full-blown 
colistin resistance [69, 70]. Hong et al. [60] found isolates displaying a heteroresis-
tant phenotype at low antibiotic concentrations, distinct from the typical heterore-
sistant colistin isolates emerging at high colistin concentrations. The mechanisms 
of heteroresistance to colistin in A. baumannii are consistent with those previously 
described for colistin resistance, involving LpxACD, PmrCAB, and efflux pumps 
[60, 65, 68, 71, 72].

Detecting heteroresistant strains necessitates using the population profile analysis 
(PAP) method, the gold standard for identifying heteroresistance. In clinical practice, 
the introduction of the mini-PAP method, particularly for colistin with MIC >2 mg/L, 
has been recommended [73]. However, the fact that conventional susceptibility test-
ing categorizes heteroresistant isolates as susceptible to colistin poses a notable con-
cern [65]. Heteroresistance can sometimes be indicated by colonies within the growth 
inhibition zone, as seen with Etest® strips or disc diffusion assays. Nevertheless, 
standard dilution methods used for MIC determination fail to detect heteroresistance, 
potentially leading to suboptimal patient dosages. This suboptimal treatment might 
inadvertently select the resistant population, contributing to therapeutic failures 
[26, 74]. Inappropriate colistin use also holds significant potential for rapid resistance 
development and therapeutic inefficacy [75]. Under selection pressure, a subpopula-
tion of resistant cells within a heteroresistant population can become predominant, 
yielding an entirely resistant population [68].

2.6 Clinical use

In clinical practice, polymyxins are employed as either polymyxin B or colistin. 
Despite their structural similarity, these drugs differ in their administered forms and 
exhibit distinct clinical pharmacokinetics (PK) [30]. Polymyxin B is directly admin-
istered in its active form as polymyxin B sulfate salt. In contrast, colistin is adminis-
tered as an inactive prodrug called colistin metasulfate or colistimethate (CMS). Once 
metabolized, CMS is converted into the active ingredient colistin base. CMS is less 
toxic than colistin, and its conversion to colistin occurs gradually, coupled with rapid 
renal elimination.

Consequently, only about 20–25% of the administered CMS is effectively trans-
formed into colistin [76–78]. Polymyxin B administration leads to quicker attainment 
of target concentrations [79]. Although polymyxin B and colistin exhibit comparable 
in vitro antimicrobial activity [30], differences in their plasma concentration profiles 
following therapy initiation will likely significantly impact their pharmacodynamic 
responses in patients.
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3. Polymyxin toxicity

The 1990s saw the emergence of multidrug-resistant bacteria, including those 
resistant to β-lactams, aminoglycosides, and quinolones, causing nosocomial infec-
tions, particularly in intensive care units [80–83]. This scenario increased interest 
in polymyxins and spurred several reviews [84, 85]. These drugs’ most significant 
adverse effects include nephrotoxicity, particularly acute renal failure, and neuro-
toxicity. The latter is thought to result from the high binding affinity of polymyxins 
to brain and renal tissues [86]. Additional effects encompass allergies leading to skin 
lesions resembling urticaria, pain at the injection site (with intramuscular administra-
tion), thrombophlebitis (with intravenous injection), fever, and eosinophilia [87, 88].

3.1 Nephrotoxicity

Nephrotoxicity ranks as the foremost adverse event often linked to the use of 
 polymyxins. Thus, comprehending the mechanisms and risk factors for its develop-
ment has been a focal point of research [89, 90]. Clinical manifestations of polymyxin-
associated nephrotoxicity include direct toxicity to renal tubules leading to tubular 
necrosis, oxidative damage, decreased glomerular filtration rate, reduced creatinine 
clearance, and elevated serum urea and creatinine levels [80, 91]. Risk factors for 
kidney damage among polymyxin users encompass high doses, concurrent use of 
other nephrotoxic drugs, vasoactive medication requirements, and a higher body mass 
index [92–95]. The substantial concern with nephrotoxicity lies in its dose-dependent 
nature. In other words, the choice of therapy can influence the extent of drug-induced 
toxicity, potentially exacerbating the clinical condition of patients [96]. Dose-
dependent nephrotoxicity is the most frequently reported adverse event with intra-
venous polymyxin use, affecting between 30 and 60% of patients [78, 85, 97–101]. 
However, it is often reversible [102]. While most studies have examined colistin, fewer 
studies have focused on polymyxin B. Due to the slower conversion of CMS to colistin, 
reaching therapeutic serum levels may be delayed, necessitating higher initial CMS 
doses to achieve effective treatment early on. However, this strategy is constrained 
by the potential for nephrotoxicity. Polymyxin B, administered directly in its active 
form, reaches the desired plasma concentration more promptly [30]. Recent literature 
suggests greater nephrotoxicity with colistin compared to polymyxin [103]. However, 
these findings require careful evaluation due to many factors influencing nephro-
toxicity development, especially during the initial stages. Additionally, the potential 
nephrotoxicity of low polymyxin B doses may have been underestimated. Several 
studies have explored the efficacy of polymyxin B and colistin against A. baumannii, 
providing data on nephrotoxicity incidence and mortality (Table 1).

Acute kidney injury (AKI) is a prevalent clinical complication observed primar-
ily in critical and hospitalized patients, characterized by the release of measurable 
proteins in both plasma and urine. This condition is rooted in the sudden decline of 
renal function, classified into risk, damage, failure, loss, and AKI stages [137, 138]. 
Critically ill patients suffering from AKI often face elevated mortality rates. This 
acute injury can progress to chronic kidney disease, defined by kidney damage and a 
glomerular filtration rate below 60 mL/min/1.73m2 over 3 months. Therefore, discon-
tinuing polymyxin therapy is imperative whenever signs of renal failure are detected. 
Supportive care, including monitoring fluid intake, output, and electrolytes, becomes 
necessary when renal dysfunction is associated with polymyxin use [85].
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

60/COL AB (39)
PA (21)

CrL of 1.5 mg/dL or urea level 
of 50 mg/dL

27 (NRF)
58 (ABCL)

37 [104]

21/IVCOL AB (21) SCr value of 12 mg/dL, 
reduction in the calculated 
CLCr of 50% relative to the 
matter at antibiotic therapy 
initiation, or a decline in RF 
that resulted in the need for 

RRT

24 61.9 [105]

60/PB AB (46)
PA (2)

AB + PA (2)
NI (10)

Double the SCr for a value 
≥2 mg/dL

14 20
57 (DRF)

15 
(NDRF)

[106]

26/COL PA (20)
AB (6)

ND 14.4 33.3 [107]

16/IVCOL, 
AEROPB + AA

AB (16)
PA (12)

Doubling of SCr 6 21 (EOT)
48 (AD)

[108]

19/IVCOL PA (12)
AB (5)

CrV at the beginning of 
COLtreatment was compared 
with the maximum value of 
creatinine during therapy as 

well as with the CrV at the end 
of treatment using a non-

parametric test (Wilcoxon)

0 41.2 [109]

55/COL AB (36)
PA (19)

SCr value of 12 mg/dL, 
reduction in the calculated 
CLCr of 50% relative to the 
matter at antibiotic therapy 
initiation, or a decline in RF 
that resulted in the need for 

RRT

0 27 [110]

43/COL PA (35)
AB (8)

Acute RF was defined as 
a rise of 2 mg / dL in the 

SrCr level of patients with 
previously normal renal 

function

62.5 27.9 [111]

51/COL AB (28)
PA (23)

Normal renal function was 
defined as a SCr level of 1.3 mg/

dl or lower.

8 24 [112]

37/IVPB, 
PBVN, both 
(IPB/PBVN), 
DOXI

AB (37) Increase in SCr of 0.5 mg/dL, 
or increase ≥50% in SCr or 

reduction of ClCr ≥50%

21/6 27 [113]

45/IVPB PA (20)
AB (19)

PA + AB (2)
NI (4)

Acute increase in SCr level by 
>0.5 mg/dL over 24 h

4 52 (IH) [114]

16/PB PA (8)
AB (5)
KP (3)
EC (1)

Increase in SCr of 0.5 mg/dL or 
a 50% reduction in CLCr

55 63 [98]
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

82/COL, PB AB (82) Doubling of SCr (any time 
during treatment compared 
with the start of therapy) or 
increase by 1 mg/dL if initial 

SCr was 1.4 mg/dL

26 (COl group)
27 (PB group)

56 (COL 
group)
61 (PB 
group)

[115]

114/IVPB PA (95)
AB (13)
KP (1)

PA + AB (2)
NI (3)

Baseline SCr < 1.5 mg/dL 
when SCr levels increased to 
1.8 mg/dL (AKI) or baseline 

SCr 1.5 mg/dL when SCr levels 
increased to >50%, or there was 

a need for dialysis

22 AKI/NS 61.4
92 (DAKI)

53 
(NDAKI)

[116]

276/PB PA (126)
AB (86)
NI (64)

MRI: 50% but <100% (increase 
in creatinine concentration 

during therapy); MORI: 
100% (increase in creatinine 

concentration but with no need 
for hemodialysis); SRI: need for 

hemodialysis during therapy

15.7 (MRI)
38.3 (MOSRI)

60.5 (IH) [99]

80/PB (NPD 
or CD)

KP (49)
AB (21)
PA (14)
EC (4)

ECO (1)

Defined by RIFLE criteria 40 (1 week after 
the last dose)

15 vs. 20 
(EOT)

30 vs. 38 
(EOH)

[116]

173/COL, PB AB (107)
PA (46)

Defined by RIFLE criteria 60 (COL group)
41.8 (PB group)

ND [92]

32/IVPB AB (26)
PA (1)

ECO (1)
SE (1)
Mu (3)

Defined by RIFLE criteria 18.7 28.1
(EOT)

[117]

225/IVCOL,
PB

PA (103)
AB (74)
KP (52)

ECO (11)
Other (17)

Prevalence of nephrotoxicity 
within 30 days in 

colistimethate group compared 
with PB group Comparison of 
nephrotoxicity prevalence in 

matched patients

21.4 (COL 
group)

21.4 (PB group)

55.3 (COL 
group)

21.1 (PB 
group)

[93]

104/PB AB (34)
KP (25)
PA (11)
Mu (34)

Defined by RIFLE criteria 14.4 47 [118]

132/COL, PB AB (43)
PA (22)
KP (12)
DI (18)
NI (37)

Classified according to AKIN 
criteria

20.8 (AKI/PB 
group)

38.9 (AKI/COL 
group)

47 [119]

36/PB A spp. (12)
KP (8)
PA (6)

ECO (6)
E spp. (5)
Other (9)

Increase of 100% of SCr level 
from baseline

21.4 44.5 [120]
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N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

410/PB AB (150) PA 
(45)

KP (42) ECO 
(5)

EA (5)
NI or NR 

(162)

Defined by RIFLE criteria 12.7 42 [121]

151/ PB KP (92)
AB (32)
PA (17)

Other (10)

AKI: increase in  
SCr 1.5 times the value 
at PB initiation or the 

initiation of RRT by day 7 of 
PB treatment, defined by  

RIFLE criteria

35.8 AKI NS [122]

192/ IVPB KP (92)
AB (53)

Defined  
by  RIFLE  

criteria

45.8 NS [123]

491/IVCOL,
PB

AB (180)
KP (55)
PA (51)
EA (9)

ECO (5)
NI (190)

Incidence of AKI by RIFLE 
criteria

38.3 (COL 
group)

12.7 (PB group)

NS [124]

291/PB, NVPT, 
in vitro VCT

AB (228)
PA (61)
KP (14)

Other (7)

Defined by RIFLE criteria 98 of 291 23 [125]

112/IVCOL, 
PB

KP (31)
AB (22)
PA (19)
ECO (5)
NI (35)

A two-fold increase in SCr or 
a 50% decrease in estimated 

CLCr

26.8 NS [103]

84/IVPB, 
PBM, PB/
CARB, CEFO/
SUL

AB (81) MRI: decrease in baseline CLCr 
of 50% or doubling of baseline 

SCr in patients with normal 
renal function, or an increase of 
baseline SCr of 50% or decrease 

of CLCr of 20% in patients 
with abnormal baseline anal 

function

7.1 (RI) 48.8 (IH) [126]

222/PB AB (67)
E (50)

PA (15)
Other (4)
NI (86)

Defined by RIFLE criteria 46.3 60.3 [127]

273/PB KP (108)
PA (74)
AB (77)

ECO (22)
Other (9)

Defined by RIFLE criteria 32 47 (ODD)
17 (TDD)

[128]



11

Understanding the Harmful Impact of Polymyxins on Acinetobacter baumannii
DOI: http://dx.doi.org/10.5772/intechopen.1003649

N° of patients/
therapy

GNB (n) Definition of nephrotoxicity Nephrotoxicity 
(%)

Mortality 
rate (%)

Ref.

183/IVCOL or 
ICOL, IVCOL/
ICOL

Acinetobacter 
calcoaceticus-
Acinetobacter 

baumannii 
(Acb) complex 

(183)

Increase in SCr of ≥0.3 mg/
dL in 2 days or ≥ 50% in 7 days 
after COL treatment without 

other defined causes

13.3 19.1 [129]

250/COL + 
MERO

AB (197)
AB+KP (1)

NS (52)

Classified according to AKI 
criteria

30.8 41.6 [130]

39/IVCOL PA (34)
AB (5)
EC (1)

Based on the ROC curve, the 
cutoff value of the colistin 
trough concentration that 

would predict nephrotoxicity 
was 2.02 mg/mL

47.6 33.3 [131]

87/COL AB (73)
NS (14)

Increase in the SCr level by at 
least 50% from the baseline 

after≥48 h

27.6 NS [132]

50/COL Defined by RIFLE criteria 54 (MIC 
≤0.5 μg/mL

NS [133]

25/IVCOL AB (25) Increase in SCr to ≥1.5- fold 
from baseline, decrease in the 
estimated CLCr to <75% from 
baseline, or requirement for 

RRT

20 40 (IH) [134]

163/COL A spp. (118)
PA (32)
KP (7)

E spp. (6)

Followed by KDIGO 
classification: creatinine 

elevation of ≥0.3 mg/dL in 
48 h or ≥ 1.5 times baseline 

creatinine in an interval of up 
to 7 days

46 17.8 [135]

101/COL AB (101) Defined by RIFLE criteria 52.6 (LD group)
20.5 (WLD 

group)

51.3 [136]

COL, colistin; PB, polymyxin; PBM, polymyxin B monotherapy; IVCOL, intravenously colistin; ICOL, inhaled colistin; 
AEROPB, aerosolized polymyxin B; IVPB, intravenously polymyxin B; TDD, twice daily dosing; NRF, normal renal 
function; ABCL, abnormal baseline creatinine levels; PBVN, polymyxin B via nebulization; NPD, new protocol design; 
CD, conventional dosing; NVPT, nonvalidated polymyxin therapy; VPCT, validated polymyxin combination 
therapy; CARB, carbapenems; CEFO, cefoperazone; SUL, sulbactam; DOXI, doxycycline; MERO, meropenem; 
AB, Acinetobacter baumannii; PA, Pseudomonas aeruginosa; KP, Klebsiella pneumoniae; EC, Enterobacter 
cloacae; ECO, Escherichia coli; E spp., Enterobacter spp.; EA, Enterobacter aerogenes; A spp., Acinetobacter spp.; 
E, Enterobacteriaceae; DI, dual infection; SCr, serum creatinine; CLCr, creatinine clearance; CrL, Creatinine 
level; CrV, Creatinine values; NI, none identified; MRI, mild renal impairment; NR, not request; NS, not stated; 
NRF, normal renal function; ABCL, abnormal baseline creatinine levels; DRF, Developed renal failure; NDRF, not 
developed renal falure; Mu, multiple; AERO, aerosolized; RI, Renal impairment; RF, renal failure; AD, at discharge; 
AA, antimicrobial agente; ND, not determined; EOT, end of treatment; IH, In-hospital; RIFLE, Risk, Injury, Failure, 
Loss of kidney function and End-stage kidney disease; EOH, End of hospitalization; AKI, acute kidney injury; AKIN, 
acute kidney injury network; ODD, Once daily dosing; TDD, twice daily dosing; DI, dual infection; MORI, moderate 
and severe renal impairment; DAKI, developed Aki; NDAKI, not developed AKI; RRT, renal replacement therapy; 
KDIGO, kidney disease improving global outcomes; LD, loading dose; WLD, without loading amount.

Table 1. 
Studies report nephrotoxicity during polymyxin therapy against Acinetobacter baumannii.
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3.2 Neurotoxicity

Neurotoxicity constitutes another undesirable consequence of polymyxin 
administration. Neurotoxicity related to polymyxins affects 7–27% of patients, with 
most cases involving concurrent renal failure [139, 140]. Symptoms of neurotoxicity 
encompass weakness, peripheral and facial paresthesia, ataxia, ophthalmoplegia, nys-
tagmus, difficulty swallowing, and eyelid ptosis [88, 139–144]. Severe manifestations 
include muscle blockade leading to respiratory failure, often requiring ventilatory 
support for 10 to 48 hours [140, 141]. Typically, these symptoms decrease upon taper-
ing or discontinuation of the drug. The administration of colistin triggers the activa-
tion of pro-inflammatory mediators within neuronal cells [145]. Research indicates 
that neurotoxicity entails a complex interplay of apoptotic and inflammatory path-
ways. Studies involving colistin treatment (15 mg/kg/day for 7 days) revealed signifi-
cant mitochondrial dysfunction in central and peripheral nervous tissues [146, 147]. 
Similarly, exposure to colistin (200 μM/24 h) induced apoptosis in around 50% of 
neuronal N2a cells in mice [145]. Further exploration using Western blotting and 
immunohistochemistry demonstrated that colistin-induced apoptosis in N2a neuro-
nal cells hinges on generating reactive oxygen species (ROS) and the mitochondrial 
pathway [145, 148, 149]. Interestingly, co-administration of neuroprotective agents, 
such as curcumin and minocycline demonstrated, in vivo efficacy against polymyxin-
induced neurotoxicity [145, 149].

3.3 Skin hyperpigmentation

Although nephrotoxicity ranks as polymyxin B’s most significant adverse 
 reaction, another substantial side effect is skin hyperpigmentation. Polymyxin 
B induces this condition, which impacts psychological well-being and results 
in significant esthetic harm [150–158]. Cutaneous hyperpigmentation has been 
observed as a reaction to polymyxin B, affecting adults and pediatric and neonatal 
patients [151, 153–155]. According to cohort studies, the incidence of cutaneous 
hyperpigmentation attributed to this drug ranges from 8–15% [151, 152]. Cutaneous 
hyperpigmentation involves biochemical and immunological mechanisms, primar-
ily associated with histaminergic receptors that stimulate melanogenesis, ultimately 
leading to melanin deposition in the dermis [150]. Typically, skin darkening 
manifests between the third and seventh days following the commencement of 
intravenous polymyxin B treatment. This phenomenon does not show significant 
disparities concerning light exposure or infection sites across patients [152]. 
Hyperpigmentation is often concentrated on the face and neck regions with higher 
melanocyte density, while the rest of the body remains unaffected during treatment 
[152, 154, 155, 159].

In some cases, discontinuing polymyxin B treatment reveals hyperpigmentation 
that can persist for months [150]. During the COVID-19 pandemic, polymyxin B 
treatment was administered to physicians with COVID-19 and secondary multidrug-
resistant bacterial infections, resulting in hyperpigmentation on the head and 
neck [160]. This pigmentary disorder may be associated with AKI in critically ill 
COVID-19 patients [160]. Excessive accumulation of polymyxin B might contribute 
to aberrant hyperpigmentation in neonates and infants with immature renal function 
[153, 158].
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4. Conclusions

In summary, this chapter presents a comprehensive review of the toxicity 
of  polymyxins, which serve as the last resort for treating infections caused by 
carbapenem-resistant A. baumannii. The chapter begins by highlighting the current 
significance of A. baumannii as a challenging pathogen in healthcare settings, given 
its formidable ability to develop resistance through diverse mechanisms. Accordingly, 
it ranks as a high-priority microorganism for research and developing new antimicro-
bials. Despite their notable toxicity, polymyxins were re-introduced in the late 1990s 
due to escalating carbapenem resistance and limited alternative options. The chapter 
delves into the discovery and isolation of polymyxins, focusing on polymyxin B and 
polymyxin E (colistin) as the two varieties in clinical use. Their distinctive structural 
features enable interactions with cell membrane LPS, leading to membrane disrup-
tion through the cationic peptide ring’s hydrophilic nature and the fatty acyl chain’s 
hydrophobic characteristics. The emergence of polymyxin resistance is addressed, 
focusing on its occurrence through mutation or adaptation in Gram-negative bacteria. 
In A. baumannii, the resistance mechanism involves genes influencing LPS biosynthe-
sis and lipid A structure.

Additionally, efflux pumps and the mcr-1 gene contribute to colistin resistance. 
The phenomenon of heteroresistance to colistin in A. baumannii is explored, empha-
sizing its reliance on the population profile analysis method for detection. This 
method, recognized as the gold standard, has revealed the presence of heteroresis-
tance and its association with the previously discussed resistance mechanisms. Lastly, 
the clinical use of polymyxin B and colistin is outlined alongside their toxic effects. 
Nephrotoxicity is a prominent adverse event tied to polymyxin use, characterized by 
direct renal tubule toxicity and dose-dependent, often reversible effects. Most studies 
focus on colistin. One of its clinical complications is acute kidney injury (AKI). 
Neurotoxicity emerges as another unwanted effect, causing symptoms that generally 
wane with drug reduction or discontinuation. Severe cases might involve muscle 
blockade leading to respiratory failure. Furthermore, skin hyperpigmentation, a 
recognized reaction to polymyxin B, affects patients of varying ages through complex 
biochemical and immunological mechanisms.
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