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Abstract

Artificial Intelligence [AI] has been of great discussion lately and one can perceive 
its use in many aspects of modern life. In science, and more specifically in Materials 
Sciences, AI has been employed for many different applications. Machine Learning 
(ML) has been historically linked to Artificial Intelligence (AI) for many decades. 
Some basic concepts of ML can be traced from the 1930s, but it was only during the 
1980s and 1990s that ML really started to be used in a stronger and well-organized 
fashion, due to the development of more efficient algorithms from better and more 
robust data processing machines. This chapter presents a review on the recent works 
of distinct research groups that have been using Machine Learning [ML], which is 
one of many different methods of AI, as a tool for predicting steel properties. A brief 
definition of ML is given at the beginning of the chapter, followed by some of the 
most relevant examples of ML use to exemplify the power of this AI method for the 
development of steel engineering.

Keywords: steels, machine learning, artificial intelligence, steel properties,  
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1. Introduction

Machine Learning (ML) has been historically linked to Artificial Intelligence (AI) 
for many decades. Some basic concepts of ML can be traced from the 1930s, but it was 
only during the 1980s and 1990s that ML really started to be used in a stronger and 
well-organized fashion, due to the development of more efficient algorithms from 
better and more robust data processing machines. In 1995, Cortes and Vapnik [1], 
from Bell Laboratories, introduced the concept of ML in their work and from that 
point on, the development of ML has been enormous.

Another significant contribution was the development of Artificial Neural 
Networks (ANNs), which are models inspired by the functioning of the human brain. 
These networks, made up of multiple layers of artificial neurons, were able to learn 
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from large amounts of data and perform complex tasks, such as pattern recognition 
and image processing. With the advancement of the internet and the emergence of 
large data storage platforms, the field of Machine Learning has begun to use larger 
and larger datasets to train its models.

The advent of Machine Learning [ML] [2] has ushered in a transformative era in 
the industrial landscape, redefining the approach to complex technological challenges 
and to process optimization. With its foundation in advanced data analytics and 
computational algorithms, ML has become the linchpin of innovation across various 
sectors. In the realm of industrial research and development, ML catalyzes a paradigm 
shift in how industries innovate. At the intersection of advanced data analytics and 
computational intelligence, ML emerged as an indispensable tool, offering unprec-
edented capabilities to enhance decision-making, fostering a sustainable and adaptive 
approach to the evolving landscape of industrial research.

The integration of ML in the domain of steel studies marks a transformative leap 
in the ability to predict and tailor the properties of steels with unprecedented preci-
sion. By harnessing the power of advanced computational algorithms, researchers 
and industry professionals can delve into vast datasets, extracting intricate patterns 
that govern the relationships between steel compositions, processing parameters, and 
alloys’ properties. Therefore, ML can play a powerful role in steel-related studies by 
enabling advanced data analysis and pattern recognition, opening avenues for predic-
tive modeling, enabling the anticipation of key characteristics, thereby revolution-
izing the design, production, and quality control processes in the steel industry [3].

For instance, these algorithms can analyze intricate relationships between input 
variables and production outcomes, therefore contributing to process optimization. 
This aids in optimizing manufacturing processes by fine-tuning parameters like tem-
perature, pressure, and steel compositions. Through iterative learning, ML models 
can adapt to evolving conditions, contributing to enhanced efficiency and resource 
utilization. In quality control, ML-based systems are adept at detecting anomalies 
and defects in steel products. Image recognition algorithms, for instance, can scru-
tinize visual data from production lines, identifying imperfections or irregularities 
in real-time. This proactive approach reduces waste and ensures the production of 
high-quality steel. On the other hand, ML can aid in optimizing the steel supply chain 
by predicting demand fluctuations, identifying potential bottlenecks, and improv-
ing inventory management. This ensures a streamlined and responsive supply chain, 
minimizing delays and optimizing resource allocation [2, 3].

This chapter will be focused on an important application of ML in steel produc-
tion: Properties Prediction. In other words, it will be explored how ML serves as a 
dynamic and indispensable tool for forecasting and optimizing the properties of 
steels for diverse applications. The basics of ML will be introduced and then, exam-
ples on how to use ML for cases of material properties will be presented.

2. The basics of machine learning

What exactly is machine learning from its inception? While its definitions may 
vary slightly across different fields, it can be broadly described as “the field revolving 
around the creation of algorithms and computational models, enabling systems to learn 
patterns and make predictions or decisions without direct programming.” This entails 
the iterative training of models on data, enabling them to identify intricate patterns, 
correlations, and interdependencies [3].
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Machine Learning can be classified according to the kind of learning the system is 
subjected to, varying from supervised to unsupervised learning, as shown in Figure 1 
[2, 4, 5].

2.1 Supervised learning

Supervised learning [5] is one of the main categories in machine learning. It 
involves creating models by using labeled data, also known as instances or examples, 
in order to learn how to make predictions or decisions. In simpler terms, the model is 
exposed to a set of input and output examples, where the desired output is provided 
or labeled for each example. Using these labeled examples, the model learns how to 
map new inputs to the desired outputs.

This type of algorithm is capable of creating predictive models that estimate 
a specific property of elements in a set, typically referred to as a target, based on 
a group of known parameters known as features. To define this model, a process 
called “training” or “fitting” is necessary. During this process, the algorithm is 
shown a training set consisting of a large number of examples where the properties 
of interest are already known. For instance, it is possible to train a model to predict 
the hardness gain of steels in a certain thermos-mechanical treatment by using a 
database containing the fractions of alloying elements and instrumental treatment 
parameters from a wide range of steel compositions. When the target property 
is a discrete random variable, the model is known as a “classification” model. 

Figure 1. 
Classification of machine learning methods.
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Conversely, if the target is a continuous random variable, the model is referred 
to as a “regression” model.

2.2 Unsupervised learning

When working with data that do not have labels, a different algorithm is required. 
This particular category of models is known as Unsupervised Learning [6], where the 
algorithm is trained using unlabeled data. The system then attempts to learn patterns, 
structures, or relationships within the data without any direct guidance or predefined 
output labels. The objective is to uncover the inherent structure or distribution of the 
data and uncover hidden patterns or groups. In unsupervised learning, the training 
dataset only contains input features, with no corresponding output labels to guide the 
learning process. This includes tasks, such as grouping similar data points together, 
reducing the complexity of high-dimensional datasets, estimating probability distri-
butions to identify anomalies, discovering association rules, and segmenting data into 
meaningful groups without any prior knowledge of class labels.

2.3 Semi-supervised learning

Semi-supervised learning [5, 6] is the term used to describe the combination of 
labeled and unlabeled instances in the training of a learning algorithm. This approach 
is a middle ground between fully supervised and unsupervised learning models. By 
utilizing both labeled and unlabeled data, the model can benefit from the guidance 
provided by the labeled instances while also taking advantage of the larger pool of 
unlabeled data to improve its ability to generalize. This integration of labeled and 
unlabeled information is particularly useful in situations where obtaining labeled data 
is difficult or costly, allowing the model to be applied to real-world scenarios where 
data scarcity is a challenge. Semi-supervised learning has proven to be valuable in 
various domains, such as image recognition, natural language processing, and medi-
cal diagnostics, where labeled data may be limited, expensive to acquire, or require 
expert annotation. This makes it ideal for applications where the model’s performance 
can be enhanced by effectively combining labeled and unlabeled instances.

2.4 Deep learning and reinforced learning

The final two machine learning models, considered to be the most intricate ones, 
are called Deep Learning [7, 8] and Reinforced Learning [9, 10]. Deep Learning 
utilizes neural networks that have multiple layers to automatically extract hierarchi-
cal representations from data, allowing for the modeling of intricate patterns and 
features. It has demonstrated exceptional performance in demanding tasks, such as 
recognizing images and speech, processing natural language, and analyzing sequen-
tial data. On the other hand, Reinforcement Learning is a framework in which an 
agent learns to make decisions by interacting with an environment and receiving 
feedback in the form of rewards or punishments. This approach is particularly suit-
able for problems that involve making decisions in a sequence, controlling systems, 
and optimizing tasks. Deep learning excels in tasks that involve vast amounts of data 
and complex relationships, while reinforcement learning is well suited for scenarios 
where an agent must learn optimal strategies through trial-and-error interactions, 
making it applicable in various fields such as robotics, game playing, and autonomous 
systems.
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3. Determination of steel properties by machine learning

Steel properties (such as physical, chemical, electrical, mechanical, and so on) 
are mainly acquired in a range of different tests and experiments, by the collection 
of empirical numerical data, later to be processed and analyzed accordingly [11]. 
Machine Learning offers, besides other features, an important contribution in terms 
of data prediction and data analysis never seen before, because it anticipates features 
that could not be achieved simply by conventional testing. The tremendous compu-
tational capability of ML allows the optimization of more intricate steels properties 
analysis. This section presents a few works that have been developed in the past years, 
where the use of ML has proven to be an important feature for the determination of 
some of those steel properties. These examples present cases where distinct types of 
ML techniques have been used successfully.

3.1 ML on the determination of mechanical properties of steels

Nowadays, many different studies can be found in the literature related to the 
prediction and determination of mechanical properties of steels. Some of those 
works are brought here for exemplification of how strong this computational tool 
can be for the development of steel engineering. Three different studies are pre-
sented, depicting how ML became a powerful predictive asset for steel property 
prediction.

3.1.1 Enhancing manganese (Mn) medium steel’s mechanical properties

Lee et al. [12] created a model dataset of 1075 values acquired from literature 
related to the tensile properties of manganese medium steels, aiming at the 
 development of a new Mn medium steel with superior high strength. With the 
analysis of the datasets, authors could create a boosted decision tree regression 
[BD] model to predict ultimate tensile strength [UTS] and total elongation [TE] 
of medium-Mn steels. The trained BD models predicted that the Mn medium steel 
would have high UTS of 1957 MPa and TE of 10.7%, when austenitized at 780°C 
for 4 min and air-cooled. The predicted UTS and TE matched well with experi-
mentally measured values of UTS of 1952 MPa and TE of 9.9%, indicating the 
efficacy of the BD models. The steel designed by the BD model exhibited high UTS 
[1952 MPa] experimentally, which was approximately 100 MPa higher than that 
of medium-Mn steel.

3.1.2 Steel microstructure modeling

Wang and Adachi [13] developed in their study an important tool based on 
Machine Learning algorithms, to predict microstructure models where direct analy-
sis of property predictions and properties-to-microstructure inverse analysis was 
conducted. From those data, they aim to reach steel properties, such as stress–strain 
curves, tensile strength, and total elongation.

3.1.3 Thermo-mechanically controlled process (TMCP) for steels

Lee et al. [14] used ML to predict how thermo-mechanically controlled process 
[TMCP] would change some mechanical properties of steel alloys. In their study, the 
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authors gathered 16 attributes related to the compositional and processing informa-
tion and the corresponding yield strength and ultimate tensile strength values for 
5473 thermo-mechanically controlled processed [TMCP] steel alloys. From those 
data, they designed an ML platform that was able to predict those properties from the 
chosen attributes.

3.2 ML on the determination of corrosion properties of steels

It is well known that steel degradation and corrosion can generate huge economi-
cal and production losses in many industries worldwide. It can also cause catastrophic 
impacts not only on metallic components and equipment, but also on people’s lives. 
Therefore, corrosion prevention is mandatory for many processes.

Machine Learning has been a tool for corrosion prevention in many studies. The 
work of Coelho and colleagues [15] is cited here for its interesting approach. They 
investigated the pitting corrosion on a 316L steel, which is one of the most utilized 
steels in the world, due to its good mechanical and corrosion properties. The 316L 
steel low carbon and high chromium contents enables this material to resist many 
different types of temperatures and environmental degradation. Their goal was to 
estimate pitting descriptors for their target steel using scanning electrochemical cell 
microscopy (SECCM). The methodology mainly consisted of building a hybrid rule-
based machine learning approach, via linear regression and artificial neural networks. 
They were able to observe a trend of passive range shortening with increasing testing 
aggressiveness due to the delayed stabilization of the passive film, rather than early 
passivity breakdown.

Aghaaminiha et al. [16] studied how to measure corrosion rates of carbon steel 
as a function of time when corrosion inhibitors are used in different dosages and 
dose schedules. Supervised ML was employed and came up with the Random Forest 
prediction algorithm, among others, because that algorithm displayed the lower mean 
squared error ranging from 0.005 to 0.093, which are good values for prediction, 
demonstrating that the entire time trend of the corrosion rate of mild steel was quite 
well predicted by the trained RF model.

3.3 ML on the determination of microstructural properties of steels

The material microstructure is surely the basic feature of any material from where 
every property is determined. The specific steel microstructure provides important 
information on how that steel might behave depending on the external characteris-
tics it might be subject to. Therefore, being able to understand and predict material 
microstructure is fundamental for steel engineering. Today, one can find many 
studies on that subject and more and more scientists are employing ML to aid their 
understanding of steel microstructure.

Kim et al. [17] proposed an ML method using unsupervised deep learning to 
estimate phase volume fraction of multiphase steel. Their results presented a mean 
relative error between 0.73% and 4.53%, suggesting that the estimated phase fraction 
values are very close to the true phase fraction of the multiphase steel.

Kusampudi and Diehl [18] developed an ML model that was able to generate dual-
phase steel microstructures, based on the steel phases and crystallographic orienta-
tion aiming to build steels with desired properties. Their method consisted of training 
a variational autoencoder to identify the attributes from a synthetic dual-phase 
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microstructure, with Bayesian optimization. A Rain Forest ML was also employed to 
predict the microstructure-properties relationship.

3.4 ML on the determination of welding process properties

In the realm of welding research, the utilization of machine learning entails the 
strategic implementation of computational algorithms as a means of analyzing and 
optimizing various aspects of the welding process. Machine learning techniques offer 
the potential to forecast the quality of welds, refine welding parameters to an optimal 
level, and promptly identify potential flaws or irregularities as they occur.

Through the assimilation of data acquired from sensors, images, and other sources 
during the welding procedure, machine learning models can acquire an understand-
ing of intricate patterns and correlations, thereby assisting in the construction 
of predictive models pertaining to weld strength, integrity, and overall quality. 
Furthermore, the incorporation of machine learning has the capacity to contribute 
to automated decision-making in welding, such as making real-time adjustments to 
parameters based on feedback, thereby bolstering efficiency and minimizing the 
necessity for manual intervention. The integration of machine learning within the 
domain of welding research holds great promise in advancing the precision, depend-
ability, and productivity of welding processes across a wide array of applications and 
industries [19].

Tran et al. [20] developed an artificial intelligence-based system to predict several 
relationships between welding process parameters and weld bead geometries for 
shielded metal arc welding (SMAW), metal inert gas (MIG), and tungsten inert 
gas (TIG) processes. The system was built of both a regression model and the deep 
learning model, establishing a commendable correlation between the welding process 
parameters and the weld bead geometry. These research findings lay a foundation for 
constructing predictive systems or refining welding process parameters.

Abd Halim et al. [21] created an application tool called Q-check that utilizes an 
open-source and customized algorithm based on artificial neural networks to predict 
parameters such as welding time, current, and electrode force, in relation to tensile 
shear load-bearing capacity [TSLBC] and weld quality classifications [WQC]. For 
this purpose, a supervised learning algorithm was implemented, encompassing the 
standard backpropagation neural network gradient descent [GD], stochastic gradient 
descent [SGD], and Levenberg-Marquardt [LM] methods, based on an 80% training 
and 20% test set. The results showed that, for predicting TSLBC, it has achieved an 
87.220% accuracy rate for GD, 92.865% for SGD, and 93.670% for LM algorithms. On 
the other hand, for the prediction of WQC, the accuracy rates were observed to be 
62.5% for GD and 75% for both SGD and LM algorithms.

Wang et al. [22] present the design of an intelligent expert system for gas metal 
arc welding (GMAW) process, with the aim of allowing the user to input the initial 
welding information, and subsequently display suitable welding procedure parameter 
schemes through an output interface. The user can then select the most appropriate 
scheme based on the specific requirements or generate a welding procedure speci-
fication in line with the enterprise format for immediate utilization. To do this, the 
system incorporates database technology and the utilization of the XGBoost machine 
learning algorithm to further enhance its capabilities. XGBoost is short for eXtreme 
Gradient Boosting algorithm, which is, in practice, a binary tree based on Gradient 
Boosting, a supervisioned regression algorithm. By training the model on a dataset, 
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the system can predict the welding raw data and continuously optimize the model by 
accumulating more data for daily use.

4. Conclusions

This chapter presented an overview on how Machine Learning can be used to 
predict various steel properties. It could be seen that Machine learning models can 
analyze various factors, such as chemical composition, heat treatment parameters, 
and processing conditions, to predict the strength properties of steel, such as yield 
strength, ultimate tensile strength, and hardness. Machine learning algorithms can 
also be trained on datasets that contain information about steel composition, environ-
mental conditions, and past instances of corrosion to develop models that can predict 
the corrosion resistance of different steel grades. Some steel processing features, such 
as weldability, can also benefit from this technique.

In general, it can be noted that for any type of ML (Supervised, Unsupervised, 
Semi-Supervised Deep, and Reinforced Learning), the size of the input dataset is cru-
cial for the efficiency of the models to be used in the learning. Datasets with a great 
amount of data, either from literature or from testing, seem to be fundamental for 
creating efficient decision trees for more accurate predictions of specific features on 
materials. That can also aid inverse analysis learning algorithms and promote optimal 
attribute associations.

By leveraging machine learning techniques, engineers and material scientists 
can efficiently analyze complex datasets to predict and optimize steel properties for 
various applications, leading to better material selection and improved performance 
in real-world scenarios. However, it is important to address the potential challenges 
and ethical considerations associated with machine learning. It is essential to ensure 
that the deployment of machine learning technologies aligns with societal values and 
benefits all individuals.

© 2024 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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