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Abstract

Nowadays, acoustic black holes (ABHs) are very popular for producing efficient
vibration reduction at high frequencies in combination with some damping mecha-
nisms. However, its low-frequency performance is hard to improve since the
ABH effect principally occurs beyond its cut-on frequency. Fortunately, periodic
ABH configuration offers some bandgaps below that frequency for wave attenuation.
In this chapter, a topological ABH structure is suggested to produce a new bandgap at
very low frequencies, by taking a supercell and decreasing the ABH distance. The
wave and Rayleigh-Ritz method (WRRM) is adopted to compute the complex disper-
sion curves. Examinations of the dispersion curves and transmissibilities confirm the
efficiency of the low-frequency vibration reduction capability of the proposed topo-
logical ABHs.
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1. Introduction

Acoustic black holes (ABHs) in mechanics are very efficient for wave manipula-
tion in structures. By decreasing structural thickness following a power law, the
impinging wave can be significantly retarded and concentrated as it propagates to the
tip. Usually, in the vicinity of the ABH tip, some damping mechanisms [1, 2] are
adopted; thus, the vibration energy is converted to, for example, heat, resulting in
highly efficient vibration attenuation. However, there exists a cut-on frequency that
relies on the ABH size. It is generally thought that the ABH effect can only be efficient
above that frequency. While in practical engineering situations the tough task is
related to low frequencies. Therefore, it is imperative to ameliorate the low-frequency
performance of ABH structures.

Periodic distribution of ABHs [3–5], a new type of phononic crystal/metamaterial,
could produce some bandgaps below the cut-on frequency, constituting a promising
approach for low-frequency vibration reduction. This concept is first investigated in
Refs. [6–8], where the purpose is to modulate the wavefront of bending waves in
plates. Later, a periodic ABH beam is proposed [9], reporting that many locally
resonant low-frequency bandgaps are formed below the cut-on frequency. Recently, it
has been unveiled that these bandgaps are caused by Bragg scattering [10].
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Interestingly, a compound ABH beam structure (also called double-leaf ABH beam)
has been extensively studied [11–13], due to that many broad bandgaps can be found.
In Ref. [14], very low bangaps are obtained by modifying the ABH parameters. Nev-
ertheless, it is very tricky to obtain complete bandgaps in plates. In Ref. [15], a circular
double-leaf ABH structure is proposed, showing that complete and sub-wavelength
bandgaps are found. While in Ref. [16], a strip ABH is proposed, providing broad
bandgaps and showing promising application for wave manipulation in plates. On the
other hand, periodically placing resonators on the ABH plate has also been investi-
gated [17, 18], where a very low bandgap is formed to suppress the first formant of the
plate. Not only that, nonlinear effect has been applyed for ABHs, taking the advantage
of energy transfer from low to high frequencies [19]. Recently, as an alternative of
embedded ABHs, the additive ABHs have been widely explored, showing that the
added mass could somehow facilitate low-frequency wave reduction [20–23].

To further improve the low-frequency performance of embedded ABHs, we must
resort to the combination of different physics. Inspired by topological metamaterials,
in the current chapter, we propose topological ABHs to generalize a low-frequency
bandgap, by adjusting the ABH distance in a supercell, as illustrated in Figure 1. It is
worthwhile mentioning that the concept of topology has been introduced in previous
works [24, 25]. However, the purpose of those works is concentrated on the presence
of robust edge or surface states within the bandgap. Very differently, in the current
chapter, we exploit the low-frequency bandgap generalized by the topological ABHs,
to further enhance the low-frequency performance of ABHs. Please note that it is easy
to prove the topological property by showing, for example, interface states or topo-
logical symmetry. We will overlook that because the focus is only placed on generat-
ing low-frequency bandgaps.

To unveil the properties of the proposed topological ABHs, we adopt our previ-
ously established wave and Rayleigh-Ritz method (WRRM, see [18, 26]) to recover
the complex dispersion curves, where the imaginary part stands for the wave attenu-
ation (including damping and bandgaps). Furthermore, the transmissibilities of finite
structures will also be tested, to prove the existence of low-frequency topological
bandgap.

Figure 1.
Illustration of (a) a unit ABH cell with detailed geometry parameters, (b) periodic ABHs, and (c) topological
ABHs.
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2. Wave and Rayleigh-Ritz method

In this section, we will place the focus on the wave and Rayleigh-Ritz (WRRM) to
compute the complex dispersion curves. For the ease of exposition, we take the Euler-
Bernoulli assumption, such that the bending displacement of the beam can be
expanded by a series of basis functions,

w x, tð Þ ¼
Xn
i¼1

ai tð Þφi xð Þ≔φ⊤ xð Þa tð Þ, (1)

where a is the unknown coefficient vector to be determined and φ signifies a
Gaussian function vector (see the Gaussian expansion method, GEM [27, 28]).

One can continue in the Rayleigh-Ritz framework to reach the following equation
of motion,

K � ω2M
� �

A ¼ 0, (2)

where M and K respectively denote the mass and stiffness matrices. Please note
that in Eq. (2) we have taken a ¼ A exp iωtð Þ, where ω represents the angular fre-
quency.

The following step is to impose the Bloch-Floquet periodic conditions at the cell
boundaries,

w1 ¼ λw2, (3)

∂xw1 ¼ λ∂xw2, (4)

where w1 and ∂xw1 respectively represent the displacement and rotational angle at
the left end, and w2 and ∂xw2 correspond to the right one. λ ¼ exp ikLð Þ stands for the
propagation constant with k being the wavenumber.

Now inserting Eq. (1) into Eqs. (3) and (4) we have

�λ 0 1 0

0 �λ 0 1

� � φ⊤
2

∂xφ⊤
2

φ⊤
1

∂xφ⊤
1

2
6664

3
7775A ¼ 0

0

� �
≕~ΛΦ⊤A ¼ 0, (5)

where we have identified ~Λ and Φ.
The key step here is to attain the nullspace basis prescribed by Eq. (5). With the

indication in Ref. [29], we can get the basis Z for N ~ΛΦ⊤� �
,

Z ¼ Zφ, CZ
� � ¼ Zφ, C

� � I 0
0 Zr

� �
, (6)

where

Zr≔

1 0

0 1

λ 0

0 λ

2
6664

3
7775 ¼ I

λI

� �
, (7)
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Zφ ¼ N Φ⊤� �
, (8)

and

C ¼ Φ⊤� �þ
: (9)

Assuming the final response A is linearly constituted by the basis of Z, that is,
A ¼ Zk, we arrive at

K � ω2M
� �

Zk ¼ 0, (10)

with k being the unknown vector to be solved. Eq. (10) becomes the equation of
motion satisfying the periodic boundary conditions in Eqs. (3) and (4).

To simplify the computation, we define Zc � Zφ, C
� �

and

Zl � 1 0 λ�1 0

0 1 0 λ�1

" #
� I λ�1 I

� �
: (11)

Pre-multiplying Eq. (10) by diag I,Zlð ÞZ⊤
c we get

I 0
0 Zl

� �
K � ω2M
� � I 0

0 Zr

� �
k ¼ 0, (12)

where Kn�n≔Z⊤
c KZc and Mn�n≔Z⊤

c MZc are square matrices.
Now, it is possible to compute the real dispersion curves once a wavenumber k

is given. However, our purpose is to get the complex dispersion curves, where ω
is fixed and k is to be determined. To do so, we define D � K � ω2M and
partition it as

Dn�n ¼
D11, n�4ð Þ� n�4ð Þ D12, n�4ð Þ�4

D⊤
12,4� n�4ð Þ D22,4�4

" #
: (13)

Now, Eq. (12) becomes

D11k1 þD12Zrk2 ¼ 0,
ZlD⊤

12k1 þ ZlD22Zrk2 ¼ 0,
(14)

where k⊤1 , k
⊤
2

� � � k. Clearing k1 we have

Zl D22 �D⊤
12D

�1
11 D12

� �
Zrk2 ¼ 0: (15)

The Schur complement of D11 can be designated as G≔D22 �D⊤
12D

�1
11 D12, which

can be further partitioned as

G ¼ G11 G12

G⊤
12 G22

� �
: (16)

Recalling the definition of Zl and Zr, we can obtain the following equation,
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I λ�1I
� � G11 G12

G⊤
12 G22

� �
I
λI

� �
k2 ¼ G11 þG22 þG⊤

12λ
�1 þG12λ

� �
k2 ¼ 0, (17)

which can be converted into a quadratic eigenvalue problem for λ. Therefore, the
wavenumber k∈ℂ can be solved for a given ω∈.

3. Numerical results

Once built the computational model, we start to show some numerical results. As
shown in Figure 1, the lattice constant is selected as L ¼ 0:1 m, and the beam thickness at
the uniform part is huni ¼ 3 mm. The ABH profile is defined as h xð Þ ¼ εxm þ hc, where
m ¼ 2, hc ¼ 0:6 mm, ε ¼ huni � hcð Þ=rmabh ¼ 6m�1, and rabh ¼ 2 cm. The beam is made of
steel, with Young modulus being E ¼ 210 GPa, density ρ ¼ 7800 kg=m3, and loss factor
η ¼ 0:005. On the other hand, the damping layer has size rd ¼ 2 cm and hd ¼ 1:8 mm,
and the Young modulus Ed ¼ 5 GPa, density ρd ¼ 950 kg=m3, and loss factor ηd ¼ 0:5.

In the following, we will first examine the complex dispersion curves, then the
transmissibilities are inspected to ensure the existence of topological low-frequency
bangap.

3.1 Complex dispersion curves

To start with, we do not consider any damping (no damping layer and η ¼ 0), and
a standard periodic cell is considered. As illustrated in Figure 2a and b, where the real
and imaginary parts of the complex dispersion curves have been computed. It is
observed that there are two bandgaps appearing in 175–555 Hz and 1635–2330 Hz,
respectively. According to the analysis in Ref. [10], those bandgaps are induced by the
Bragg scattering effect. Now, we take the supercell (as depicted in Figure 1b), with
d ¼ αL, where α ¼ 1. Please note that in this case the bandgaps should occur at the
same frequency range. As demonstrated in Figure 2c and d, this is true, indicating
that our WRRM is accurate to recover the complex dispersion curves. Particularly, in
Figure 2d we found that the evanescent wave is doubled compared to that in
Figure 2b. This is reasonable because two cells provide more wave attenuation. Please
note that there are two passbands and two stopbands in the frequency range of
interest (see Figure 2a), computed from the periodic cells. However, when using
supercell structure, each passband has been divided into two ones (see f ¼ 50 Hz and
f ¼ 1040 Hz), which gives us the possibility to open them in the following content.

Now, we shrink the distance of the ABHs in a supercell (see Figure 1c), and set
α ¼ 0:5. The complex dispersion curves are illustrated in Figure 3. It is seen that the
passbands are opened at f ¼ 50 Hz and f ¼ 1040 Hz, and there emerge two new
bandgaps in 45–80 Hz and 895–1100 Hz. Since we are more interested in low fre-
quencies, the new first bandgap (45–80 Hz) is much lower than the former one (175–
555 Hz). Particularly, we have only changed the ABH distance and the structure has
the same weight as before.

At this stage, we include the damping layers and the intrinsic loss of the beam
(η ¼ 0:005). The complex dispersion curves of a supercell with α ¼ 1 have been
demonstrated in Figure 4a and b, which are nothing but corresponding to standard
periodic lattice. In such a case we see that bandgaps no longer exist in the real
dispersion curves but in the imaginary part (see Figure 4b). Also, in the passbands we
also have some wave attenuation because of damping (again see Figure 4b).
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Once we decrease the ABH distance and set α ¼ 0:5 (see Figure 4c and d), as
expected, we can get a new bandgap at very low frequency f ¼ 95 Hz. Please note that
at very high frequencies the ABH effect starts to take control, so the imaginary part is
very smooth and steadily becomes larger over f ¼ 2000 Hz.

Figure 2.
(a) Real and (b) imaginary part of the complex dispersion curves of a standard periodic ABH cell. (c) Real and
(d) imaginary part of the complex dispersion curves of a standard periodic supercell. Please note that in this case
we have not included the damping layer and beam intrinsic loss.

Figure 3.
(a) Real and (b) imaginary part of the complex dispersion curves of a topological supercell with α ¼ 0:5. Please
note that in this case we have not included the damping layer and beam intrinsic loss.
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3.2 Transmissibilities

We next shed light on the wave transmission in finite beams. As usual, we first
exclude any damping. In total, 12 cells have been taken into account; thus, the beam

Figure 4.
(a) Real and (b) imaginary part of the complex dispersion curves of a standard periodic supercell. (c) Real and
(d) imaginary part of the complex dispersion curves of a topological supercell with α ¼ 0:5. Please note that in this
case we have included the damping layer and beam intrinsic loss.

Figure 5.
Transmissibilities of finite beams with 12 cells. (a) Without damping layer nor the beam intrinsic loss. (b) With
damping layer and the beam intrinsic loss.
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length equals to 1.2 m. For reference, we have computed the transmissibillity,
T ¼ 10lg w2 1:2ð Þ=w2 0ð Þ½ �, of a uniform beam (UNI) where a point force is exerted at
x ¼ 0, see the brown line in Figure 5a. For the better inspection of low frequencies,
we have chosen logarithmic scale for the frequency axis. Not only that, the T of
standard periodic ABH beam has also been computed, see the black line in Figure 5a.
We can find that two bandgaps take places at the frequency ranges predicted by the
dispersion curves in Figure 2. Once we have set α ¼ 0:5 (see the red curve in
Figure 5a), we can get a new bandgap centred at 70 Hz.

Once the damping layer and intrinsic loss η ¼ 0:005 are taken into account, it is
seen that vibration peaks are substantially smoothed, especially at high frequencies,
where the ABH effect starts working. However, the most intriguing phenomenon is
the presence of the low-frequency topological bandgap at f ¼ 100 Hz, confirming that
the proposed supercell ABH with shrinking distance is very promising for low-
frequency vibration reduction.

4. Conclusions

In this chapter, we have proposed a topological ABH metamaterial to generalize a
low-frequency bandgap for vibration reduction. Based on a standard periodic
ABH beam, we have taken a supercell and reduced the ABH distance, opening new
bandgaps, especially at low frequencies.

To characterize such a feature, we have adopted the wave and Rayleigh-Ritz
method (WRRM) to compute the complex dispersion curves, which relies on solving
the quadratic eigenvalue problem of k∈ for a fixed ω∈. After that, we have
analyzed impact of changing the ABH distance on the bandgaps. Before including the
damping, the bandgaps can be both appreciated in the real and imaginary parts of the
complex dispersion curves. However, after considering the damping, bandgaps can
only be inspected in the imaginary part.

Both the analyses on the dispersion curves and tranmissibilities indicate that the
topological ABHs can indeed produce a low-frequency bandgap, which constitutes a
promising low-frequency wave manipulation technique.
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