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Abstract

This chapter provides a probabilistic framework for formulating classical
probability theory, quantum probability, thermodynamics, diffusion, and the Wiener
integral using a set of four axioms or principles. It explains everything that conven-
tional quantum information theory and classical probability theory achieve. We want
to emphasize that this framework is not an interpretation of quantum mechanics such
as “Many-Worlds,” “Bohm’s Theory,” or the “Copenhagen interpretation.” It is much
more general and can be viewed as a probability algorithm that calculates probabilities
of future events. As a result, previously perplexing paradoxes find resolution. In
particular, the superposition principle takes on a new meaning. Our probabilistic
framework stands apart from the Hilbert space formalism. It relies solely on elemen-
tary set theory, classical logic, and complex numbers. Consequently, this theory is
accessible for instruction in educational settings. This framework can be regarded as
an axiomatic approach to probability in the sense of Hilbert. In his sixth of the twenty-
three open problems presented at the International Congress of Mathematicians in
Paris in 1900, Hilbert called for an axiomatic probability theory.

Keywords: quantum information theory, quantum physics, probability axioms,
Feynman’s formulation, thermodynamics, diffusion, Brownian motion

1. Introduction

The true logic of the world is in the calculus of probabilities. James Clerk Maxwell

According to the Cambridge dictionary, probability is a nonnegative number
representing how likely a particular outcome in a random experiment will happen.
David Hilbert introduced his renowned set of fundamental problems, including the
sixth problem, which aimed to establish an axiomatic foundation for probability
theory, much like geometry. Several notable responses to Hilbert’s challenge have
resurfaced since then, see [1]. However, it is worth noting that more than a century
later, von Weizsäcker ([2], p. 59), further delved into this topic:
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Probability is one of the outstanding examples of the epistemological paradox that we
can successfully use our basic concepts without actually understanding them. von
Weizsäcker [2]

Even today, classical probability, its axioms, and how to assign probabilities to ele-
mentary events is a philosophical dispute discussion. There are various interpretations of
probability, including one of the oldest, the frequency interpretation. See [1, 3], and the
literature therein for different interpretations and axioms.

The concepts of information and probability are closely linked. For instance, the
Shannon concept of information relies on probability, such as the thermodynamic con-
cept of entropy. In the same way, quantum states are probabilistic states of information.

About the probability in quantum information science, Weinberg [4] writes:

Even so, I’m not as sure as I once was about the future of quantum mechanics. It is a
bad sign that those physicists today who are most comfortable with quantum mechanics
do not agree with one another about what it all means. The dispute arises chiefly
regarding the nature of measurement in quantum mechanics. Weinberg [4]

Regarding quantum probability problems, discussions often take on a strange and
peculiar attitude, as Fuchs [5] noted in his reflections on the annual conferences.

What is the cause of this year-after-year sacrifice to the “great mystery?” Whatever it
is, it cannot be for want of a self-ordained solution: Go to any meeting, and it is like
being in a holy city in great tumult. You will find all the religions with all their priests
pitted in holy war — the Bohmians [3], the Consistent Historians [4], the
Transactionalists [5], the Spontaneous Collapseans [6], the Einselectionists [7], the
Contextual Objectivists [8], the outright Everettics [9, 10], and many more beyond
that. They all declare to see the light, the ultimate light. Each tells us that if we accept
their solution as our savior, then we too will see the light. Fuchs [5]

A detailed description of interpretations of quantum mechanics, including many
references, can be found in [6]. We also mention the easily readable WIKIPEDIA
article “interpretations of quantum mechanics.”

In this chapter, we introduce a predictive algorithm designed for calculating
probabilities concerning future macroscopic events or detector clicks. Our principles
maintain a strict separation of internal possibilities and outcomes, leading to a broader
scope than the axioms of quantum mechanics. This chapter summarizes some
essential parts of three lecture notes [7–10], including some corrections.

The chapter is organized as follows. The basic axioms of classical probability and
the fundamental add and multiply rule, meaning that “probabilities for disjoint events
are added, and probabilities for independent events are multiplied,” are introduced in
Section 2. Moreover, it is emphasized that classical probability and quantum
probability are not compatible. The main topic of this chapter is a probabilistic
framework, consisting of four general principles, which, in particular, allow the
reconstruction of classical probability and quantum probability. These principles form
the content of Section 3. Several examples, including the double-slit experiment, are
presented in Section 4. Some more details about Hilbert’s sixth problem are given in
Section 5. In Section 6, we show that our probabilistic framework is consistent and
contains a U 1ð Þ symmetry as in quantum electrodynamics. In Section 7, we present
the reconstruction of Feynman’s formulation of quantum mechanics, which is
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mathematically equivalent to Schrödinger’s theory and Heisenberg’s matrix
mechanics. Its close relationships to Brownian motion, Wiener integrals, and diffusion
are described in Section 8. The reconstruction of statistical thermodynamics,
described in Section 9, is a vital touchstone when applying a probabilistic theory.
Finally, some conclusions are given.

2. The Kolmogorov axioms

In 1933, Kolmogorov presented a mathematical theory of classical probability in
terms of some axioms that have since become standard. He uses elementary set
theory. Given two sets A and B, the union A⋃B denotes the set whose elements appear
either in A or in B, or in both. The intersection A∩B denotes the set whose elements
appear in both sets A and B. If A is a subset of B, then the complement Ac is the subset
of B whose elements are not in A.

Kolmogorov’s axioms are based on two fundamental sets:

i. The sample spaceO of outcomes. The outcomes are also called elementary events.

ii. The probability algebra A of subsets of O that contains O itself and is closed
under complement and countable unions. Sometimes, this algebra is called
field. The subsets A∈A are called events.

Moreover, there exists a mapping Pr, called probability from the field of
events A∈A into the set of nonnegative numbers:

iii.
A ! Pr Að Þ, 0≤Pr Að Þ≤ 1, Pr Oð Þ ¼ 1, (1)

and for any countable set of disjoint events Am, the equation

Pr ⋃
∞

m¼1
Am

� �
¼
X∞
m¼1

Pr Amð Þ: (2)

must be fulfilled.
The condition that probabilities are numbers between zero and one is essential

since otherwise, we cannot hope that the relative frequencies of an event A approach
PR Að Þ. The relative frequency is the number of times the event A occurred in a series of
executions of an experiment divided by the number of executions, thus being
bounded between zero and one.

Two events A and B are called independent if both do not influence each other. For
instance, if we toss a coin twice and know the outcome A of the first toss, then this has
no influence on the result B of the second toss. The probabilities for independent
events are multiplied, that is,

Pr A∩Bð Þ ¼ Pr Að ÞPr Bð Þ: (3)

In summary, the probabilities of disjoint events are added, and the probabilities of
independent events are multiplied. This is the well-known multiply and add rule,
which holds valid already for Laplace experiments.
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The mathematics of Kolmogov’s probability theory is well understood, but its
interpretation is controversial, see also [3].

It is well-known that classical probability and quantum probability are incompat-
ible and contradictory. For example, Anthony Zee [11] writes on page 141 under the
title “Dice Unlike Any Dice:”

Welcome to the strange world of the quantum, where one cannot determine how a
particle gets from here to here. [...] When a die is thrown, the probability of getting a 1
is 1/6. The probability of getting a 2 is, of course, also 1/6. Now, consider the following
question: What is the probability of getting a 1 or a 2 in one throw? The answer is
evident to gamblers and non-gamblers alike: The probability is 1/6 + 1/6 =1/3. In
everyday life, to obtain the probability of either A or B occurring, we simply add the
probability of A occurring and the probability of B occurring.

The quantum die is astonishingly different. Suppose we are told that for the quantum
die the probability of throwing a 1 is 1/6, and the probability of throwing a 2 is also
1/6. In contrast to what our experience with ordinary dice might suggest, we cannot
conclude that the probability of getting either a 1 or a 2 in one throw is 1/3! It turns out
that the probability of throwing a 1 or a 2 can range between 1/3 and 0!

Apparently, quantum theory yields results other than classical probability theory,
and the question arises about a more fundamental theory below both theories.

The main aim of this publication is to present a general probability theory that
simultaneously allows the treatment of classical stochastic and quantum mechanical
experiments.

3. A unified probabilistic framework

An opinion on quantum mechanics, held by numerous physicists, is eloquently
articulated in the book authored by Susskind and Friedman ([12], p. 24):

For a classical system, the space of states is a set (the set of possible states), and the logic
of classical physics is Boolean. That seems obvious, and it is not easy to imagine any
other possibility. Nevertheless, the real world operates along different lines, at least
whenever quantum mechanics is important. The space of states of a quantum system is
not a mathematical set [6]; it is a vector space. Relations between the elements of a
vector space are different from those between the elements of a set, and the logic of
propositions is different as well.

Is a Hilbert space formalism and a modified logic indispensable in quantum phys-
ics? We describe a probabilistic framework that unifies classical mechanics, statistical
thermodynamics, and quantum mechanics, not based on Hilbert spaces but on classi-
cal logic. It is based on decidable alternatives, which we call outcomes. The outcomes
are described by sets consisting of elementary possibilities. Our approach partially
supports the opinion of Fuchs and Peres [13]:

The thread common to all the nonstandard “interpretations” is the desire to create a
new theory with features corresponding to some reality independent of our potential
experiments. But, trying to fulfill a classical worldview by encumbering quantum
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mechanics with hidden variables, multiple worlds, consistency rules, or spontaneous
collapse without any improvement in its predictive power only gives the illusion of a
better understanding. Contrary to those desires, quantum theory does not describe
physical reality. What it does is provide an algorithm for computing probabilities
for the macroscopic events ( “detector clicks”) that are the consequences of our
experimental interventions. This strict definition of the scope of quantum theory is the
only interpretation ever needed, whether by experimenters or theorists. Fuchs and
Peres [13]

In the following, we consider random experiments in the broadest sense. They are
described by three sets:

i. The possibility space P is a set with elements p∈P. We call its elements
elementary possibilities.

ii. The possibility algebra F is defined as the collection of subsets of P that
contains P itself and is closed under complement and countable unions, that
is, F is a field. The subsets F∈F are called possibilities. If F does not correspond
to an elementary possibilities pf g, then F is called nonelementary.

iii. The sample space O consists of pairwise disjoint sets F∈F called outcomes. The
outcomes form a partition of the possibility space, that is, each elementary
possibility p∈P is contained in exactly one outcome F. If an outcome F
consists of more than one element, we call its elements internal elementary
possibilities, which are accessible from F.

Additionally, we demand the existence of a function that evaluates possibilities:

iv. A probability amplitude is defined as a mapping φ from the possibility algebra
F into the set of complex numbers:

F ! φF ¼ φ Fð Þ∈, F∈F: (4)

We claim that these quantities satisfy two general principles or axioms.
First principle: Given a countable set of pairwise disjoint possibilities Fm ∈F, in

order that F ¼ ⋃mFm, it is

φF ¼ φ ⋃
m
Fm

� �
¼
X
m

φFm
: (5)

This principle is the superposition of probability amplitudes. It is very general
compared to Feynman’s first principle: “When an event can occur in several alterna-
tive ways, the probability amplitude for the event is the sum of the probability
amplitudes for each way considered separately” ([14], pp. 1–16). Feynman’s quantum
mechanics does not distinguish between outcomes, possibilities, and internal possibil-
ities. Hence, it differs from our framework. Moreover, Feynman uses the four-
dimensional space-time, and we require only the partitioning future, present,
and past.

Second principle: This is Born’s rule. It transforms probability amplitudes of out-
comes F to probabilities Pr Fð Þ:
5
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Pr Fð Þ ¼ φFj j2 for all F∈O, and
X
F∈O

φFj j2 ¼ 1: (6)

Born’s rule states that the probability of measuring a specific outcome F is propor-
tional to the square of the absolute value of the probability amplitude associated with
that outcome. Summing up the probabilities of all outcomes, we get one, such that
Born’s rule implies a real probability measure on the sample space O. In particular,
classical probability is incorporated.

We call the quadruplet P,F,O,φð Þ, together with these two principles, a possibility
measure space.

It is worth noting that, in the literature, a measure is often defined as a nonnega-
tive function, in contrast to the use of complex amplitudes here. Nevertheless, it is
crucial to emphasize that complex numbers are both indispensable and fundamental
for accurately describing quantum physical reality, as supported by several references:
[12], page 44, [7], Section 2.2, [15].

The probabilities for the outcomes belong to the prognostic category future. In the
category present, the experiment is performed. For example, a particle runs through the
experimental setup. This particle has no idea of the experimental setup and the placed
detectors. The only thing it does is to act according to the probabilities: There is no rest,
and the particle tends to move toward states of larger probability. Notice that this point of
view is fundamentally different compared to the widely celebrated wave-particle duality.

These two principles are mathematical conditions that must be satisfied for prob-
ability amplitudes. The first principle implies that it is sufficient to compute the
amplitudes for the elementary possibilities only. The second one, Born’s rule, says we
must calculate only the amplitudes for the outcomes. Now, we introduce two further
principles that help to compute concrete probability amplitudes.

Third principle: The amplitudes φF contribute equally in magnitude for all accessi-
ble elementary possibilities. They are proportional to some constant times a complex
number of magnitude one, namely

e
i
ℏS Fð Þ: (7)

The function S Fð Þ is called the action of the elementary possibility F.
Feynman’s formulation of quantum theory is as follows:

The total amplitude can be written as the sum of amplitudes of each path - for each
way of arrival. For every x tð Þ that we could have - for every possible imaginary
trajectory - we have to calculate an amplitude. Then, we add them all together. What
do we take for the amplitude of each path? Our action integral tells us what the
amplitude for a single path ought to be. The amplitude is proportional to some
constant times exp iS=ℏð Þ, where S is the action for the path. If we represent the phase
of the amplitude by a complex number, Planck’s constant ℏ has the same dimensions.
Feynman and Hibbs [16], page 19.

In our third principle, no further requirements are made about the action, as is
necessary in the case of space-time paths. Consequently, this principle is very flexible
in describing physical problems outside space-time.

In classical probability theory, the Laplace principle of indifference says that all
outcomes are equally likely assigned with unit one. Hence, the difference is that we
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merely replace unit one with complex numbers of magnitude one. It follows that we
get back the theory of Laplace if we set the phase equal to zero.

Fourth principle: We call two possibilities F and G independent provided
their intersection is non-empty, and the occurrence of one possibility does
not affect the other one. Mathematically, independence is defined by the
equation:

φF∩G ¼ φF φG: (8)

In other words, the joint amplitude is equal to the product of their amplitudes.
Feynman ([14], pp. 3–4), describes independence as follows: “When a particle

goes by some particular route, the amplitude for that route can be written as the
product of the amplitude to go partway with the amplitude to go the rest of the way.”
Independence is a fundamental concept in probability theory and statistics because it
simplifies calculations and allows for modeling complicated random experiments.
Laplace already introduced it in the late eighteenth and early nineteenth centuries. It
says that an experiment, which breaks down into a series of possibilities happening
independently, the probability of the occurrence of all possibilities is the product of
the probability of each. Our first and fourth principle shows that the well-known
multiply and add rule in probability theory carries over to complex probability ampli-
tudes for possibilities.

The physical content of this theory lies in the third principle via the classical action
S Fð Þ: In contrast, the other principles are purely mathematical and physically empty.
Notice that the stationary-action principle is a variational principle, yielding the
equations of motion in Newtonian mechanics, general relativity, and classical electro-
dynamics when applied to the corresponding action. For example, in general relativ-
ity, it is the Einstein-Hilbert action. In quantum field theory, the action is
incorporated into the path integral.

4. Examples

4.1 Tossing a die

A simple example is tossing a fair die. There are six elementary possibilities
1, 2, 3, 4, 5, 6 yielding the possibility space P ¼ 1, 2, 3, 4, 5, 6f g. The corresponding
possibility algebra F is the power set of P. The six outcomes correspond to the six
elementary possibilities. They form a partition of the possibility space. We define the
action as equal to zero. Then, the exponential interference term in Eq. (7) is equal to
one. We set

φ∅ ¼ 0, φ kf g ¼
1ffiffiffi
6

p , for all k∈P: (9)

Hence, the probabilities for all outcomes are 1=6, according to the second principle.
The first principle yields

φ Pf g ¼ 6� 1ffiffiffi
6

p ¼
ffiffiffi
6

p
: (10)
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The value φ Pf g
��� ���2 > 1 is no contradiction because Born’s rule is only applied to the

outcomes, not to arbitrary possibilities. Notice that the probabilities of the outcomes
satisfy Kolmogorov’s axioms.

The probability amplitudes and the related probabilities are prognostic numbers
for future events. If we execute an experiment in the present, the results agree with
these probabilities.

4.2 Atom in two states

In his book, Smolin [17], Chapter 4, presents a simple quantum experiment of
an atom that can exist in two states: an excited state denoted as E and a ground state
with the lowest energy, denoted as G. The atom, while in the unstable excited state E,
has the capability to transit to the ground state G by emitting a photon. To explore
this, we place an excited atom inside a sealed box alongside a Geiger counter. Much
like the atom, the Geiger counter has two possible states: the yes-state Y, meaning that
it has detected a photon, and the no-state N indicating that no photon has been
detected.

Initially, the system is in the state E,Nð Þ with the atom in the excited state and the
Geiger counter in the no state. After a certain duration, when we open the box, we
find that the system is in one of two possible states: Either it remains in the initial state
E,Nð Þ or it has transitioned to the state G,Yð Þ with the atom in the ground state and
the Geiger counter in the yes state.

The postulates of quantum mechanics tell us that, before opening the box, the
system is in a superposition of both states

E,Nð Þ and N,Yð Þ: (11)

Smolin calls this the “in-between” state. However, we have never observed a
superposition after opening the box. This is a seemingly weird situation, as
Smolin writes. Then, he raises some questions. Why has quantum mechanics two
dynamical rules, the unitary evolution before opening the box, and the collapse into one
of the states E,Nð Þ or G,Yð Þ when opening the box? This is in contrast to other
theories that only have one dynamic. Why does the process of measurement differ
from other processes? When does the collapse occur? Does it happen when the
particle interacts with the counter or when the box is opened, and an observer
becomes conscious of the outcome? These and other questions are typical in quantum
mechanics.

Our framework is purely probabilistic, calculating numbers of future events.
In the present, when performing an experiment, the detector clicks agree with the
calculated probabilities in the sense of relative frequencies. Questions as above do not
occur. For the atom with two states and the Geiger counter, the possibility space has
the form

P ¼ E,Nð Þ, Eð ,YÞ, Gð ,NÞ, Gð ,YÞf g: (12)

The related possibility algebra is the power set of P. The outcomes coincide with
the elementary possibilities. In other words, the sample space of outcomes and the
possibility space are identical if we identify p∈P with pf g∈F. There exist no internal
possibilities. We have a simple classical statistical situation.
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We set

φ E,Yð Þ ¼ φ G,Nð Þ ¼ 0, φ E,Nð Þ 6¼ 0, φ G,Yð Þ 6¼ 0: (13)

All quantities belong to the prognostic future, that is, they describe what might
happen. The nonzero amplitudes depend on the experimental setup, the type of
atoms, and how long the particle is in the closed box. Born’s rule tells us that

φ E,Nð Þj j2 þ φ Gð ,YÞj j2 ¼ 1: (14)

In the present, the experimental results show that the atom tends to move to
higher probability outcomes. Nothing is strange; we require no “in-between”
superpositions.

Smolin’s example is directly related to the well-known Schrödinger’s cat thought
experiment, a famous quantum mechanical illustration devised by Schrödinger in
1935. It is designed to highlight the concept of superposition or “in-between” states
and the peculiar nature of quantum mechanics. In the experiment, a hypothetical cat
is placed in a sealed box with a radioactive atom, a Geiger counter, a vial of poison,
and a mechanism that will release the poison if the Geiger counter detects radiation.
According to the principles of quantum mechanics, before the box is opened and the
cat is observed, the cat’s state is in between alive and dead. In other words, until the
box is opened, the cat is considered alive and dead simultaneously. In our framework,
the cat is either dead or alive. Nothing strange happens.

4.3 The double-slit experiment

The double-slit experiment has been called “the most beautiful experiment in
physics” [18]. Frequently, its interpretation is that particles of matter behave like a
wave and that the act of observing a particle has a dramatic effect on the experimental
results. It can be performed with photons or electrons. Actually, experiments with
large molecules composed of more than 800 atoms indeed show interference. In 2012,
physicists from Vienna used large molecules called phthalocyanine, which can be seen
with a video camera exhibiting their macroscopic nature. The experiment is executed
such that only one molecule interacts with the setup. They arrive localized at small
places at the final wall of detectors, a behavior typical for macroscopic objects, not for
classical waves.

Imagine a source producing particles. Behind is a wall with two slits in it and, after
that, a screen of detectors. If we execute the experiment, some particles will bounce
off the wall, but some will travel through the slits and will arrive at the screen, see
Figure 1. We consider only the particles arriving at the screen. We define the ele-
mentary possibilities as follows: They are piecewise straight paths sadm, sbdm from the
source s, via the wall W with two slits a and b, to the detectors dm,m ¼ �l, … , l
positioned on the screen D.

We consider three experimental setups. Firstly, only one slit is open. Secondly,
both slits are open, and thirdly detectors measure through which slit the particle goes.
We shall see how these changes in the experimental setup change the statistics
significantly.

Firstly, let slit b be closed, that is, only paths through slit a are relevant. Hence, the
possibility space is
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P ¼ sadm : dm ∈Df g: (15)

We have no internal possibilities such that the sample space of outcomes

O ¼ Odm : dm ∈D
� �

, Odm ¼ sadmf g∈F (16)

corresponds uniquely to P. This is a classical experiment. Our third principle yields
the amplitude

φ Odmð Þ ¼ φsadm (17)

via the action of the path sadm. The squared magnitudes of the amplitudes are the
probabilities:

Pr Odmð Þ ¼ φsadm

�� ��2 (18)

In the same way, we obtain the probability

Pr Odmð Þ ¼ φsbdm

�� ��2, (19)

when slit a is closed.
Now secondly, we suppose that both slits are open. Then the possibility space

consists of all paths from the source to the detectors

P ¼ sadm, sbdm : a, b∈W, dm ∈Df g: (20)

Figure 1.
The double-slit experiment: a particle leaves source s, passes one of the two slits a or b, and is detected in d1, finally.
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We have internal possibilities since it cannot be observed through which slit the
particle goes in the present. The sample space of outcomes is defined as

O ¼ Odm : dm ∈D
� �

, where Odm ¼ sadm, sbdmf g: (21)

Using the third principle, we set

φsadm ¼ 1ffiffiffi
2

p e
i
ℏS sadmð Þ, φsbdm ¼ 1ffiffiffi

2
p e

i
ℏS sbdmð Þ, (22)

and the first principle yields the amplitudes of the outcomes

φ Odm

� �� 	 ¼ φsadm þ φsbdm for all dm ∈D: (23)

Born’s rule provides the probabilities of the outcomes:

Pr Odmð Þ ¼ 1ffiffiffi
2

p e
i
ℏS sadmð Þ þ 1ffiffiffi

2
p e

i
ℏS sbdmð Þ

����
����
2

¼ 1
2

e
i
ℏS sadmð Þ
��� ���2 þ e

i
ℏS sbdmð Þ
��� ���2� �

þ 1
2

e
i
ℏS sadmð Þ


 � ∗
e
i
ℏS sbdmð Þ þ e

i
ℏS sbdmð Þ


 � ∗
e
i
ℏS sadmð ÞÞ:

(24)

Compared with the case where one slit is closed, the first term in this sum corre-
sponds to the classical probability. The second term is responsible for interference.

In the case where e
i
ℏS sadmð Þ ¼ e

i
ℏS sbdmð Þ, Eq. (24) yields

Pr Odmð Þ ¼ 2 e
i
ℏS sadmð Þ
��� ���2: (25)

Thus, the probability when only one slit is open is doubled, and we get
constructive interference. For the other extreme case where e

i
ℏS sadmð Þ ¼ �e

i
ℏS sbdmð Þ, we get

the probability

Pr Odmð Þ ¼ 0, (26)

yielding destructive interference.
We have computed only probabilities of future events, yielding a pattern of con-

structive and destructive interference. In the present, a particle chooses a path. Pref-
erably, those with high probability.

Finally, suppose we have information about the slit where a particle passes. This
information comes about by two additional detectors da and db at the slits. Assume
that the detectors work correctly such that it cannot happen that a particle arrives at
detector dm via slit b and detector da clicks, or both detectors da and db do not click.

Then the possibility space is defined as

P ¼ sadadm, sbdbdm : a, b∈W, dm ∈Df g: (27)

The outcomes are defined via the detector clicks at the screen and the
clicks of two additional detectors da and db. Hence, we obtain the sample space of
outcomes:
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O ¼ Odadm ,Odbdm : dm ∈D
� �

, (28)

where

Odadm ¼ sadadmf g,Odbdm ¼ sbdbdmf g: (29)

Using Born’s rule, we get the classical probabilities:

Pr Odadmð Þ ¼ φsadm

�� ��2, Pr Odbdm

� 	 ¼ φsbdm

�� ��2: (30)

In summary, the numbers computed for the three different experimental setups are
probabilities that describe how likely in the future a particle would meet one of the
detectors. In the present, the particle does not know anything about the experimental
setup. It passes the experiment with the tendency to move on exactly one path of higher
probability. Of course, in rare cases, the particle will also choose paths with low proba-
bility. This natural explanation is all what we need to know. We see that it is essential to
distinguish clearly between elementary possibilities and outcomes. Then interpretations,
such as “wave-particle dualism,” “many-worlds,” “non-locality,” and others are unnec-
essary. In particular, a material object does not occupy several locations at the same time
as Penrose writes in his excellently written book [19] on page 216:

As we have seen, particularly in the previous chapter, the world actually does conspire to
behave in a most fantastical way when examined at a tiny level at which quantum
phenomena hold sway. A single material object can occupy several locations at the same
time and like some vampire of fiction (able, at will, to transform between a bat and a
man) can behave as a wave or as a particle seemingly as it chooses, its behavior is governed
by mysterious numbers involving the “imaginary” square root of -1. Penrose [19]

Penrose gave, not unfounded, his book the title FASHION, FAITH, and FANTASY.
Our aim is, however, to show that the world is stochastic, at least their physical
descriptions, but in no way fantastical and mysterious.

Large macroscopic molecules or other objects can be described as a cloud of
elementary particles the constituents. Suppose the binding force between these con-
stituents is very weak. Then the constituents in this cloud can independently of one
another move through both slits yielding interference. But when the binding force
between the constituents is large, then all move through the same slit. Then we get a
stochastic pattern as in the case where only one slit is open.

It is easy to generalize the double-slit experiment to finitely many slits and to
finitely many subsequent walls. Then the possibility space consists of all possible paths
from the source via the walls to the detectors. Passing over to infinitely many walls
with infinitely many slits leads to Feynman’s path integral. For several other aspects of
slit experiments, see Jansson [9], Chapter 4.

5. Hilbert’s sixth problem

Hilbert’s sixth problem [20] asks how to axiomatize those branches of physics in
which mathematics, in the first rank the theory of probabilities, is prevalent. The aim
is to treat physics by means of axioms, as in geometry.
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Several different systems of axioms exist for probability theory. One of the most
commonly used and well-known sets of axioms is the Kolmogorov axioms. These
axioms are contained in our four principles via Born’s rule for the outcomes. Our
axiomatic approach to probability theory is similar to the axiomatic approach in
geometry, where the foundational principles, such as Euclid’s axioms, provide the
basis for the development of geometric concepts and theorems. The axiomatic system
in geometry consists of the following components:

• The primitives: points, lines, and planes.

• The axioms are statements about these primitives; for instance, two points are
together incident with one line.

• The laws of logic.

• The theorems that are the logical consequences of the axioms.

According to Hilbert, primitive terms are empty shells or placeholders with no
intrinsic properties. It means that instead of points, lines, and planes, we can also use
the words windows, chairs, and houses. A concrete meaning of the primitives of a
geometrical system yields a model of the axiomatic system, where all theorems are
true statements in this model. Our possibility measure space may be viewed as an
axiomatic probability theory in the sense of Hilbert’s sixth problem, which is com-
posed of the following components:

• The primitives: elementary possibilities, outcomes, and amplitudes.

• The axioms are statements about these primitives; for instance, each elementary
possibility is contained in exactly one outcome.

• The laws of classical logic.

• The theorems, such as the inclusion-exclusion principle [9].

We shall consider several concrete models of our principles or axioms, thereunder
Feynman’s formulation of quantum mechanics in space-time, Wiener processes, and
thermodynamics.

6. Consistency and symmetry

In the following, we prove the internal consistency of our probability theory,
ensuring that it remains free from contradictions. Furthermore, we establish that our
theory possesses a U 1ð Þ symmetry, meaning that all probabilistic statements remain
unchanged when the amplitudes associated with individual possibilities are
transformed by a single element of the U 1ð Þ group.

At first, we show that the probability amplitude φF is well-defined, that is, the
amplitude should not depend on the partitioning of F. If F contains one element, there
is nothing to prove. For two disjoint elements where F ¼ ⋃ F1,F2f g, the amplitude
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φF ¼ φF1
þ φF2

¼ φF2
þ φF1

is well-defined. In the case of three pairwise disjoint pos-
sibilities F1, F2,F3, we partition F ¼ ⋃ F1, F2,F3f g as follows:

F1, F2,F3; ⋃ F1, F2f g,F3; ⋃ F1, F3f g, F2; ⋃ F2, F3f g,F1: (31)

Complex addition is associative and commutative. Hence, in each case, the first
principle yields

φF ¼ φF1
þ φF2

þ φF3
, (32)

and φF is well-defined. Analogously, the same holds true when the partitioning
consists of more than three elements:

φF ¼
X
m
φFm

: (33)

The second principle, Born’s rule, requires that the sum of the square of the
magnitudes of all probability amplitudes that correspond to the outcomes is one. This
is a simple normalization condition that can always be achieved.

Finally, due to Born’s rule, multiplying all probability amplitudes with the same
element eiϕ ∈U 1ð Þ does not change the probabilities. Thus, our possibility measure
space has a symmetry with respect to the fundamental symmetry group U 1ð Þ. It is
well-known that quantum electrodynamics has a U 1ð Þ gauge symmetry, justified by
the fact that the absolute phase of the wave functions of electrons, photons, or other
particles cannot be measured.

7. Reconstruction of quantum mechanics

In this section, we present a reconstruction of Feynman’s quantum mechanics,
rooted in the concept of path integrals. It is well-established that his theory is mathe-
matical equivalent to both, Schrödinger’s and Heisenberg’s quantum formulations.

We introduce Feynman’s path integral with the help of zigzag paths x tð Þ: Let a
particle move from position xa at time ta to xb at time tb in space-time. The time is
divided up into n smaller segments ta ¼ t0 < t1 <⋯< tn�1 < tn ¼ tb. All have the length
ε ¼ tb � tað Þ=n.

The possibility space P contains finitely many zigzag paths from a ¼ xa, tað Þ to b ¼
xb, tbð Þ where b varies in some subset B of the space-time. This subset may consist of
various points where detectors are positioned. The possibility algebra F is the power
set of P.

For fixed b∈B, the nonelementary possibility

F b, að Þ ¼ x tð Þ∈P : x tað Þ ¼ xa, x tbð Þ ¼ xbf g∈F (34)

defines an outcome. The sample space O consists of all sets F b, að Þ where b varies
in B. They are pairwise disjoint and form a partitioning of P.

Let c ¼ xc, tcð Þ∈C be a space-time point such that ta < tc < tb. We define the
nonelementary possibility

F b, c, að Þ ¼ x tð Þ : x tað Þ ¼ xa, x tcð Þ ¼ xc, x tbð Þ ¼ xbf g∈F: (35)
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Then

F b, c, að Þ ¼ F b, cð Þ∩ F c, að Þ, (36)

where the sets on the right-hand side are defined as above. It follows that

F b, að Þ ¼ ⋃
c∈C

F b, c, að Þ: (37)

Since the paths x tð Þ∈P are pairwise disjoint, the first principle implies Feynman’s
path integral:

φ F b, að Þð Þ ¼
X

x tð Þ∈F b, að Þ
φ x tð Þf gð Þ: (38)

The amplitude φ F b, að Þð Þ is well-known and also called Green’s kernel of motion.
Frequently, it is denoted by K b, að Þ. Using Born’s rule, we get the probability
Pr b, að Þ ¼ K bð , aÞj j2 to move from a to b.

The action of a path is defined as the integral over its Lagrangian L

S x tð Þf gð Þ ¼
ðtb
ta

L _x, x, tð Þdt: (39)

We obtain the amplitude for the elementary possibilities with the third principle:

φ x tð Þf gð Þ ¼ const exp
i
ℏ
S x tð Þf gð Þ

� �
, (40)

We consider only zigzag paths. Thus, the action takes the form

S x tð Þf gð Þ ¼
Xn
j¼1

L
xj � xj�1

ε
,
xj þ xj�1

2
,
tj þ tj�1

2

� �
: (41)

Formula (38) is the essence of the quantum formulation of Feynman. Now, we ask
how to calculate the sum over all paths. We remember the Riemann integral of some
function f , which is approximated in the form

ðxb
xa

f xð Þdx ∝
Xn
j¼0

f xj
� 	

, (42)

where the points xj are equally spaced. This sum depends on the number n.
In this form, a limit would not exist. But the normalization factor δ ¼ xb � xað Þ=n
yields

ðxb
xa

f xð Þdx ¼ lim
δ!0

δ
Xn
j¼0

f xj
� 	 !

: (43)
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Similarly, we must introduce a normalization factor for the path integral. This is
not trivial in concrete experiments.

Putting all together and taking the limit ε ¼ tb � tað Þ=n ! 0, Feynman’s path inte-
gral Eq. (38) can be written as

K b, að Þ ¼ lim
ε!0

1
A

ð
⋯
ð
exp

i
ℏ
S x tð Þf gð Þ

� �
dx1
A

⋯
dxn�1

A
, (44)

where A is a normalization constant depending on the Lagrangian.
The classical action is additive. Hence, Eq. (37), the first and fourth principle imply

S b, að Þ ¼ S b, cð Þ þ S c, að Þ, (45)

and it follows that

K b, að Þ ¼
ð
xc
K b, cð ÞK c, að Þdxc: (46)

More general, for nþ 1ð Þ points we get

K b, að Þ ¼
ð
x1

ð
x2
⋯
ð
xn�1

K b, n� 1ð ÞK n� 1, n� 2ð Þ⋯K 1, að Þ dx1dx2⋯dxn�1 (47)

where

K j, j� 1ð Þ ¼ 1
A

exp
i
ℏ
εL

xj � xj�1

ε
,
xj þ xj�1

2
,
tj þ tj�1

2

� �� �
: (48)

Now, we change the notation xb ¼ x, tb ¼ t, xa ¼ y, ta ¼ s. Then formula (46) can
be written as a wave function, well-known in quantum theory:

φ x, tð Þ ¼
ð
K x, t; y, sð Þφ y, sð Þdy: (49)

This formula says that the probability amplitude for the outcome of arriving at the
point x, tð Þ is equal to the sum over all amplitudes to reach at y, sð Þ multiplied by the
amplitude to move from y, sð Þ to x, tð Þ.

In the prevailing formulation of quantum mechanics, the Schrödinger equation
serves as the fundamental postulate. This equation can be derived from Eq. (49). We
make an initial order approximation of the wave function with respect to the time
interval ε, resulting in the formula:

φ x, tþ εð Þ ¼ 1
A

ð
exp ε

i
ℏ
L

x� y
ε

,
xþ y
2

, t

 �� �

φ y, tð Þdy: (50)

For example, in the special case of the Lagrangian L ¼ m _x2 þ V xð Þ, we substitute
y ¼ xþ μ, integrate, and expand the resulting equation to first order in ε and second
order in μ, yielding the Schrödinger equation

iℏ
∂φ

∂t
¼ ℏ2

2m
∂
2

∂x2
φþ Vφ: (51)
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The corresponding normalization constant turns out to be (see [21], Section 6)

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏεi
m

r
: (52)

Using our probability theory, we successfully reconstructed Feynman’s formula-
tion based on path integrals, ultimately deriving the Schrödinger equation. The pro-
cess of quantization naturally emerges from this equation, establishing it as a direct
outcome of our probabilistic framework. Furthermore, it is worth noting that quanti-
zation can also be derived directly from the path integral, as demonstrated by Kleinert
(cf. [21], Sections 2.6 and 9.2). In contrast, classical probability theory does not imply
the concept of quantization.

It can be shown that, in the limit case, the paths may exhibit continuity but lack
differentiability throughout space-time. In other words, the velocity is discontinuous
at every point.

The phase space path integral offers a broader perspective compared to the
space-time path integral discussed above. It introduces momentum as a crucial
parameter, establishing a connection between quantum mechanics and the
Hamiltonian formalism.

We will not provide a detailed derivation of this path integral formulation. For an
in-depth exploration of path integrals, including comprehensive information and
references, readers are encouraged to consult Kleinert’s monograph [21] and the
related literature. Additional insights on this topic can be found in the works of
Feynman (cf. [14, 16, 22]).

8. Diffusion and Wiener Integral

Readers with knowledge of statistical mechanics will readily observe a striking
resemblance between Feynman’s formulation and the concept of Brownian motion,
where discretization mirrors the behavior of discrete-time random walks. In fact, the
path integral formulation is closely related to the mathematical framework of
Brownian motion. In this section, we aim to briefly outline the connections between
quantum path integrals, Brownian motion, diffusion processes, and the Wiener inte-
gral. For a more comprehensive exploration, readers are encouraged to consult
Zeidler’s book [23], Chapter 11 and explore the relevant literature.

The heat equation is defined as a partial differential equation, specifically
addressing an initial value problem with an initial time parameter s:

∂φ x, tð Þ
∂t

¼ �κ
∂
2

∂x2
φ x, tð Þ � V xð Þφ x, tð Þ, t≥ s, φ x, sð Þ ¼ φ0 xð Þ: (53)

In addition to its wide-ranging applications in scientific domains such as
probability theory, financial mathematics, and image analysis, this equation provides
a fundamental description of heat propagation within an isotropic and homogeneous
medium. In this context, the variable φ x, tð Þ represents the temperature at a specific
spatial point, denoted by x, and at a particular moment in time, by t. Furthermore, this
equation serves as a diffusion equation when applied to a mass density, with φ x, tð Þ
representing this density. At the microscopic level, diffusion is intimately connected
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to Brownian motion, which characterizes the stochastic and random movement of
microscopic particles within gases or liquids.

In the book of Zeidler [23], Section 11.8, it is proved that its solution is

φ x, tð Þ ¼
ð
K x, t; y, sð Þφ0 yð Þdy, (54)

where the heat kernel has the form

K x, t; y, sð Þ ¼ lim
ε!0

1
A

ð
⋯
ð
exp �S x tð Þf gð Þð Þ dx1

A
⋯

dxn�1

A
: (55)

The symbol S represents the discrete action associated with a linear zigzag path,
denoted as x tð Þ ¼ x tið Þð Þ. For a Lagrangian, which is defined as the difference between
the kinetic energy and the potential energy V, we have the expression:

S x tð Þf gð Þ ¼
Xn
j¼1

1
4κ

xj � xj�1

ε


 �2
þ V xj

� 	
ε: (56)

We take the same discretization as in Section 7. The resulting normalization con-
stant for points in the three-dimensional position space is

A ¼ 4πκεð Þ3=2: (57)

Much like Feynman’s path integral, the heat kernel denoted as K x, t; y, sð Þ represents
the summation over all possible paths connecting the initial point y to the final point x.

The path integral in Eq. (55), which is also known as a Wiener integral, possesses a
well-defined and rigorous interpretation as a classical measure within the realm of
continuous functions ([24], Vol. II, Section X.11).

9. Thermodynamics

It is an important touchstone to reconstruct thermodynamics using our probability
framework. For a more in-depth exploration of this reconstruction, we refer to Jansson
([9], Chapter 5). For those seeking a comprehensive introduction to the theory of
thermodynamics, we recommend Penrose ([25], Chapter 27), and Ben-Naim [26, 27].

In thermodynamics, we often deal with an enormous number of constituents. To
illustrate, just one mole of molecules corresponds to Avogadro’s number, which is
approximately on the order of 1023. Consequently, thermodynamics fundamentally
operates as a statistical theory.

The large collections of constituents are described in terms of microstates, where
each constituent possesses attributes such as position, momentum, or energy. A
microstate represents a specific configuration of a system where all microscopic
variables are precisely determined. Microstates are distinct possibilities; they
either occur or do not in the present, but two or more microstates cannot coexist
simultaneously.

Macrostates, on the other hand, pertain to the overall thermodynamic system.
These macrostates are characterized by a small set of macroscopic variables, such as
the total energy E, pressure P, volume V, temperature T, or the total number N of

18

Quantum Information Science – Recent Advances and Computational Science Applications



molecules. Throughout the following discussion, we will useM to denote a macrostate
and μ to denote a microstate.

The number of microstates, each representing precise configurations with exact
microscopic values, can be immensely large. In contrast, a macrostate is defined by the
fixation of a small number of macroscopic variables. Each macrostate encompasses a
multitude of microstates, often referred to as accessiblemicrostates. Themultiplicity of a
givenmacrostate denoted asM is the number of its accessible microstates and is
represented as Ω Mð Þ. The total multiplicity, denoted as Ωtot, is the sum of all the multi-
plicities Ω Mð Þ.

Macrostates are measurable in contrast to microstates, and they effectively parti-
tion the set of all microstates within the system.

The foundational principle of statistical thermodynamics asserts that all microstates
within a system are equiprobable. As a consequence of this principle, the probability
associated with a macrostate M is determined by the ratio of the multiplicity of that
macrostate to the total multiplicity:

Pr Mð Þ ¼ Ω Mð Þ
Ωtot

: (58)

The obvious way to merge statistical thermodynamics with our probability frame-
work is to identify the microstates μ as the elementary possibilities p∈P and to
associate the macrostates M, as measurable states, to the outcome F∈O.

Now, we can reevaluate the probabilities associated with macrostates Eq. (58)
using our probabilistic framework. Our third principle posits that all elementary pos-
sibilities contribute equally in magnitude, meaning that the microstates μ can be
expressed with amplitudes as follows:

φμ ¼ const e
i
ℏS μð Þ: (59)

Without further knowledge about the actions of the constituents, it is reasonable to
assume that the action S μð Þ is uniformly zero for all microstates. This choice renders
the exponential term equal to one, indicating no interaction or interference. Further-
more, we set:

const ¼ 1ffiffiffiffiffiffiffiffi
Ωtot

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ω Mð Þp : (60)

Then

φμ ¼
1ffiffiffiffiffiffiffiffi

Ωtot
p ffiffiffiffiffiffiffiffiffiffiffiffi

Ω Mð Þp � 1: (61)

Since the microstates are mutually exclusive, we can invoke the first principle.
Consequently, the probability amplitude of a macrostate M takes the form:

φM ¼
X
μ∈M

φμ ¼ Ω Mð Þ 1ffiffiffiffiffiffiffiffi
Ωtot

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ω Mð Þp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ω Mð Þ
Ωtot

s
: (62)

Following Born’s rule, we obtain the classical probabilities for the outcomes as
expressed in Eq. (58) when we compute the squared magnitude of probability
amplitudes.
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It is important to note that in our derivation, we did not employ the
thermodynamic principle of indifference. Rather, our approach hinges on setting the
action of all elementary possibilities (microstates) to zero. This choice pertains to the
experimental setup rather than making a statement about probabilities.

Einstein writes about thermodynamics:

A theory is the more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression which classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am convinced that within
the framework of the applicability of its basic concepts, it will never be overthrown.
Albert Einstein, autobiographical notes (1946)

with our probabilistic framework, we have covered many applications and
reconstructed theories in addition to statistical thermodynamics.

We have introduced a probability theory describing future events. The future is
timeless. Not surprisingly, the foundational theory of statistical thermodynamics,
almost universally applicable, is also inherently timeless, as highlighted by the work of
Ben-Naim [26]. The second law of thermodynamics and the concept of entropy are
independent of time. This perspective aligns with the notion of “physics without
time” advocated by some physicists, see Rovelli [28].

10. Conclusion

John Wheeler, as mentioned by Ballentine [29], contended that true comprehen-
sion of quantum theory demands the ability to encapsulate it within a single, readily
understandable statement. Our succinct statement is as follows:

Quantum theory can be reconstructed through a simple probability framework that
characterizes future events in terms of possibilities and outcomes, employing classical
logic, straightforward set theory, and complex numbers.

Our approach to quantum theory departs from conventional quantum mechanics
in several key aspects. Moreover, our framework allows for the reconstruction of
classical statistical mechanics and thermodynamics.

The theory appears to be simple enough to be taught even in schools, similar to
Kolmogorov’s theory of probability.

Theories and interpretations can significantly influence techniques and engineer-
ing practices. Quantum information theory provides insights into communication
systems, data compression, and cryptography, essential in modern engineering prac-
tices such as telecommunications, information technology, and cybersecurity. The
two fundamental properties of quantum mechanics: superposition (see Section 3) and
entanglement (see Jansson [7], Section 4, where the theory of special relativity is
reconstructed in a six-dimensional Euclidean space), receive not only a new interpre-
tation but also a new mathematical framework. I hope this will lead to new insights in
quantum information science.
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