IntechOpen

Nonlinear Systems
and Matrix Analysis

Recent Advances in Theory and Applications

Edited by Peter Y.P. Chen
and Victor Martinez-Luaces







Nonlinear Systems and
Matrix Analysis - Recent
Advances in Theory and

Applications

Edited by Peter Y.P. Chen
and Victor Martinez-Luaces

Published in London, United Kingdom




Nonlinear Systems and Matrix Analysis - Recent Advances in Theory and Applications
http:/dx.doi.org/10.5772/intechopen.1001634
Edited by Peter Y.P. Chen and Victor Martinez-Luaces

Contributors

Alexander A. Huang, Alice Eraud, Alvaro Humberto Salas, AnaI. Julio, Anderson Pablo Freitas
Evangelista, Armando Martinez-Pérez, Bruno Carpentieri, Catherine Bruneau, F. Setoudeh, Gabino
Torres-Vega, Ginalber Luiz de Oliveira Serra, Iuliana Matei, L. Gerard Van Willigenburg, M. M.
Dezhdar, Mudassir Shams, Najmadeen Saeed, PeterY.P. Chen, RicardoL. Soto, SamuelY. Huang,
Sergio Callegari, Shna Abdulkarim, Victor Martinez-Luaces

© The Editor(s) and the Author(s) 2024

The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988 . All rights to the book as a whole are reserved by INTECHOPEN LIMITED .
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.
@)y |

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged . If soindicated, certain images may not be included under the Creative Commons
license. Insuch cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http: /www . intechopen.com/copyright-policy. html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2024 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 167-169 Great Portland Street, London, W1W 5PF, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Nonlinear Systems and Matrix Analysis - Recent Advances in Theory and Applications
Edited by Peter Y.P. Chen and Victor Martinez-Luaces

p.cm.

Print ISBN 978-1-83769-449-5

Online ISBN 978-1-83769-448-8

eBook (PDF) ISBN 978-1-83769-450-1



We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

73(D(D+ 192,000+ 210M+

ailable International authors and editor Downloads

Our author: among the

156 Top 1% 12. 2%

Countries deliv most cited s Contributors from top 500 universities

J ook *
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

1






Meet the editors

Dr. Peter Chen was born in China, migrated to Australia, and
received his tertiary education at the University of New South
Wales, Sydney. Presently, he has retired and continues as

an independent researcher. After his BSc, MEngSc, and ME
degrees, he obtained his Ph.D. at the same university in 1974.
He was a senior research scientist at the School of Mechanical
and Manufacturing Engineering UNSW. His responsibility was
to provide academic advice to research students and faculty members. His own
research interests include many topics in mechanical engineering and optical fibers.
He is specialized in solving nonlinear problems in those fields. His most recent
research is in the electromagnetic wave propagation theory for cosmic redshifts.

Dr. Martinez-Luaces is a researcher in mathematics, chemistry,
engineering, and education. He obtained three degrees from the
State University of Uruguay (UdelaR) in chemistry, chemical
engineering, and mathematics. Later, he obtained a master’s
degree and a Ph.D. in mathematics education from the Univer-
sity of Granada (UGR), Spain. He has worked for 25 years in
four separate faculties within UdelaR (Chemistry, Economics,
Engineering, and Sciences), and he held the position of head of the Mathematics
Department in the Chemistry Faculty (1996-2002). At present, he isa researcher
of the ProfeSTEAM Project at UGR, Spain. He has 24 books or book chapters pub-
lished in the U.S.A., Europe, Argentina, Singapore, and Uruguay.







Contents

Preface

Section 1
Nonlinear System

Chapter1

Introductory Chapter: Nonlinear System Analysis — An Overview
of Historical and Recent Advances

by Peter Y.P. Chen

Chapter2

A Review of Nonlinear Control Strategies for Shape and Stress in Structural
Engineering

by Najmadeen Saeed and Shna Abdulkarim

Chapter 3

A Type-2 Fuzzy State Observer Model for Non-Stationary Dynamic System
Identification: An Incremental Learning Method with Noise Handling

by Anderson Pablo Freitas Evangelista and Ginalber Luiz de Oliveira Serva

Chapter 4

Bringing Data Converter Pairs into Chaotic Oscillation for Built-in Self-Test
and Entropy Generation

by Sergio Callegari

Chapter5

Perspective Chapter: Behavioral Analysis of Nonlinear Systems and the
Effect of Noise on These Systems

by F. Setoudeh and M.M. Dezhdar

Chapter 6

Exploring the Non-Linear Relationship between Economic Growth and

Its Main Drivers over the Last Decade in EU: Evidence from a Panel Smooth
Transition Regression

by Catherine Bruneau, Alice Evaud and Iuliana Matei

XI

35

55

77

93



Chapter?7
To Be or Not to Be Connected: Reconstructing Nonlinear Dynamical

System Structure
by L. Gerard Van Willigenburg

Chapter 8

Perspective Chapter: Families of Seventh-Order KdV Equations Having
Traveling Wave and Soliton Solutions

by Alvaro Humberto Salas Salas

Chapter 9
Numerical Solutions of Nonlinear Schrédinger Equation: An Application

Example of Nonlinear Analysis
by Peter Y.P. Chen

Chapter 10

Perspective Chapter: On Two-Step Hybrid Numerical-Butterfly Optimization
Technique for System of Nonlinear Equations in Banach Space

by Mudassir Shams and Bruno Carpentieri

Chapter11

Perspective Chapter: Enhancing Regression Analysis with Splines

and Machine Learning — Evaluation of How to Capture Complex Non-Linear
Multidimensional Variables

by Alexander A. Huang and Samuel Y. Huang

Section 2
Matrix Analysis

Chapter12

Introductory Chapter: The Matrices, Their History, Importance
and Applications

by Victor Martinez-Luaces

Chapter13

Eigenvalues of Matrices in Chemical Kinetics and Their Algebraic
and Geometric Multiplicities

by Victor Martinez-Luaces

Chapter 14
Matrices with a Diagonal Commutator
by Armando Marvtinez-Pérez and Gabino Torves-Vega

Chapter 15

On the Universal Realizability Problem: New Results
by Ana 1. Julio and Ricardo L. Soto

XII

113

135

161

183

215

233

235

241

261

277



Preface

Research on nonlinear analysis is not restricted to theoretical development. Judging
from many publications in a widely diverged field of international journals, more and
more attention has been centered on the practical application of nonlinear system
analysis in a large variety of disciplines. The successes are due largely to advances in
mathematical modeling and simulation and the development of solution methods,
including general-purpose computer packages that help to solve some complicated
computational requirements.

The contributing chapters of Section 1 are reports of recent advances in theory and
applications. Chapter 1is an introduction to nonlinear system analysis. Chapter 2 is
areview of nonlinear control strategies for shapes in structural engineering. Chapter

3 presents an incremental learning method with noise handling for nonstationary
dynamic system identification. Chapter 4 describes how to bring data converter pairs
into chaotic oscillation for built-in self-test and entropy generation. Chapter 5 considers
nonlinear systems involving behavioral analysis and noise effect. Chapter 6 explores the
nonlinear relationship between economics and its driving causes. Chapter 7 introduces
simplification to properties of nonlinear and dynamical structures and shows how
controllability and observability can be computed efficiently. Analytical solution tech-
niques are the topics considered in Chapter 8, while Chapters 9 and 10 employ numerical
methods to solve nonlinear systems. Chapter 11 tries to enhance regression analysis with
splines and machine learning to capture complex nonlinear multidimensional variables.

There is no limit on how a system can be modeled. But there are some undeniable
simulation rules, including (1) assumptions and hypotheses used must not violate any
established principles; (2) a simpler model, including linear simulations, is preferred,
providing it meets all expectations; (3) reliable observations are superior to computed
data; and (4) there are limits on the reliability of the models. Various numerical
examples given in each chapter in this section provide illustrations of how those rules
could be applied.

Solution methods also play an important role in nonlinear system analysis. There

is a current trend to find analytical solutions by treating the system as an inverse
problem. In this approach, the solutions are assumed to be a combination of selected
analytical functions together with a small number of system parameters. Working
backward to satisfy the governing nonlinear equations, these parameters must satisfy
a specific number of conditions. Cases of this inverse approach include the inverse
differential and integral methods, as well as inverse scattering methods, together with
many variants. While this analytical approach could be used to study system charac-
teristics, its practical application is limited as the system must be designed based on
the preimposed conditions that may not be feasible in a physical system.

Numerical solutions have the potential to solve any mathematical problems embed-
ded in a nonlinear system. The first step involved is to reduce the mathematical



model to a set of nonlinear matrix equations that could then be solved by an iterative
algorithm using linear matrix operations. By choosing the appropriate boundary and
initial conditions, and, if needed, extra terms, the same set of equations could be
solved to cover a wide range of practical applications.

While there are extensive advances in the theory of nonlinear system analysis,
chapters of this section represent only a small number of recent achievements.
Formulating a better model and overcoming some inherent limitations remain chal-
lenges for system analysts. Not only in sciences and technologies but also in humani-
ties, there is unlimited scope for further research and development of nonlinear
system analysis.

The second section of this book is devoted to matrix theory. Indeed, matrix theory
applications are present in other branches of mathematics and in the experimental
sciences, engineering, and technology.

The importance of matrices, their historical origin, and several of their applications
are described in the introductory chapter of this section (Chapter 12). After that,

in Chapter 13, the eigenvalues and eigenvectors of matrices that appear in chemical
kinetic problems are analyzed to determine the shape of the concentration curves and
predict their qualitative behavior, emphasizing the stability of the solutions. Chapter
14 analyzes pairs of matrices that give rise to a diagonal commutator when applied

to a given, arbitrary vector, which has an interesting connection with the discrete
approximations of derivatives and integrals of a function. Finally, in Chapter 15 an
interesting inverse problem is studied—the realizability problem—which consists

of determining whether, for a given list of complex numbers, it is possible to find a
nonnegative matrix whose spectrum coincides with that list.

The results of the previous chapters are relevant to areas as diverse as chemical kinet-
ics, quantum mechanics, and matrix algebra and show only a small part of the many
contributions of matrix theory to scientific knowledge.

Peter Y. P. Chen

Former School of Mechanical and Manufacturing Engineering,
University of New South Wales,

Sydney, NSW, Australia

Victor Martinez-Luaces
ProfeSTEAM Project,
University of Granada,
Granada, Spain

XIvV



Section 1

Nonlinear System







Chapter1

Introductory Chapter: Nonlinear
System Analysis — An Overview of
Historical and Recent Advances

Peter Y.P. Chen

1. Introduction

The wide spectrum of topics in nonlinear system analysis are including but not
limited to the following:

* Nonlinear operator theory

* Multi-functional problems

* Approximation theory

* Stability of functional equations

* Fractional calculus

¢ Abstract metric space

* Nonlinear modeling and simulation

* Chaos theory, noise, and complex dynamics

* Nonlinear control and stability analysis

The theories of nonlinear system analysis have been used in a large variety of
disciplines including not only in applied sciences, engineering, and technologies but
also in social sciences, economic, environmental science, and other non-science but
related studies. The successes are due largely to advances in mathematical modeling
and simulation, and the development of solution methods, including general-purpose
computer packages that help to solve some complicated computational requirements.

2. A historical overview of nonlinear system analysis

Historically, nonlinear system analysis has evolved from linear system analysis
over the later decades of the last century. In linear analysis, a set of linear ordinary
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differential equations is used to describe a system. As linear calculus had already
been well developed, it is often possible to find solution in closed-form expressions.
Although all physical systems are virtually nonlinear in nature, the linear approach
has taken full advantage of the fact that over a limited range of the independent vari-
ables in such a nonlinear system could be approximated by a linear one. Finite differ-
ences or finite elements are used to replace the differential operators in the equations
used to simulate the system. Although the resultant set of matrix equations could be
solved by standard classical linear algebra, the computer capacity and operating speed
available in the earlier days had imposed a practical limit on the size of the matrix.
As the responses of the system are linear to the independent variables, solutions for a
problem could be obtained as a series of orthogonal functions. Therefore, in general,
with the increases in computer power now available, solutions for a linear system no
longer impose a limit on its applications.

Even with those inherent limitations due to the linearization approximation, linear
system analysis and its applications have been used widely in different fields and for
many practical problems. Over the time before 2000, there were already numerous
examples of applications such as in rotor dynamics [1], that led to the design and
control of turbines for jetliners. Through stress analysis, prestressed concrete was
used to change the design and operation of all civil structures completely. In fact,
linear system analysis had occupied an important role in post-World War II’s con-
struction, manufacturing, and technological developments. Undoubtedly, the single
most important influence of those advances is the ability to “crunch” numbers at an
exponential rate with later generations of computers. At the same time, commercial
computer packages became available such as MATLAB for finite element coding,
and FLOWS3D for fluid flow. Those packages provide valuable relief to programming
needs.

Nonlinear system analysis is not just a natural or logical progression from the lin-
ear one. There are systems, both natural and conceptual, that can only be represented
by nonlinear equations. The propagation of light waves through an optical fiber is a
well-known example. It is through theoretical studies of the solutions for nonlinear
Schrédinger equation that the capacity of optical communication systems has been
developed from a few hundred in the early times to potentially 20,000 or more
telephone calls per fiber currently. Modern manufacturing often involves heating and
nonlinear material properties that can be simulated only by nonlinear mathematical
equations.

System analysis, both linear and nonlinear, uses the scientific method to identify
goals or questions, form hypotheses and/or mathematical simulations, conduct
experiments or applications, and analyze data. Historically, the beginning of using
the scientific method could be traced back to the seventeenth century. But it was not
until the second half of the last century and following the success of its applications in
sciences and technologies that the scientific method has been adopted to most of the
non-science disciplines. Accompanied by these changes, there are often some subtle
modifications to system analysis. Science is objective based, while non-science could
be subjective based. For example, based on the same set of economic data, opposing
political parties could use their financial system analysis to reach completely different
conclusions. The reason behind this outcome is due to the different values or weights
putting, subjectively, on the goals and achievements of the models. Notwithstanding
these limitations, economic models are needed for the purposes of setting up financial
policies, planning administrative mechanisms, and implementing control procedures.
However, to achieve the best outcome, both linear and nonlinear system analysis
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employs an adaptive predictive approach. Historically, advances were made whenever
beneficial changes or new creations in system analysis were deemed necessary.

3. Recent advances in mathematical simulations

Since the beginning of the twenty-first century, it was found that mathematical
simulation of many controls and stability analysis for real-world problems need to
use fractional operators [2]. Fractional calculus was proposed by mathematicians as
early as 1695 [3]. But it is in recent years, fractional calculus began to attract a large
attention in research popularity and applications. Fractional calculus consists of
fractional differentiation and fractional integration. However, the precise mathemati-
cal implications for these terms need to be defined [3] if they are to be used in system
simulation.

Fractional models are essential in some viscoelastic flow systems both for control
and stability analysis. The fractional acoustic wave equation was found to agree better
with the experimental results. A fractional system analysis could be used for control,
signal and image processing, mechanics and dynamic systems, biology, environmental
science, material science, economics, and multidisciplinary in engineering fields [2].

4, Recent advances in solution methods

The success of nonlinear systems together with linear systems analysis is due to
their ability to be applied to a wide spectrum of practical problems. However, it is
important that solution methods are available for solving complex set of mathemati-
cal equations. Recent advances in solution methods are aiming at more effective
ways of solving dynamic systems, stochastic systems with random noise, and stabil-
ity analysis. Although well-proven methods for all these systems are available [4],
researchers are looking for efficiency and reliability.

Since the beginning of the twenty-first century, analytical solutions for a nonlin-
ear system have attracted a great deal of attention from researchers. But, because of
the nonlinear nature, little success has been achieved in solving them directly. That
is, starting from the nonlinear system itself and finding the solutions analytically in a
forward direction. However, for methods starting from some assumed solutions and
working out how to satisfy the nonlinear system analytically as an inverse problem,
there are many successes [5]. Some of these inverse examples include the inverse
differential and integral methods such as those for wave propagation [6], and the
G’/G expansion method [7]. Generally, as an inverse problem, there is no limit to how
many solutions can be found because there are infinite number of choices for the set
of system parameters that define the chosen starting solutions. But the need to have
a matching background medium is a notable limitation [8]. From the nature of those
solutions, it could be concluded that this inverse approach is more suitable for qualita-
tive analysis that the performance of a design, or the characteristics of a system could
be assessed qualitatively.

Far more numerical methods have been used in linear system analysis [9]. For a
nonlinear system, the nonlinear terms could be replaced by linearization approxima-
tions and solved linearly. An iterative scheme is then used to ensure that the solutions
have converged. Among all the known numerical methods, the collocation method
that uses Chebyshev polynomials is the most economical due to its minimax property.
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However, for computational economics, the Lanczos-Chebyshev collocation method
[10, 11] is superior because ordinary power series is used. It is worthwhile to note that
over the last 50 years, many papers and conference proceedings have been published
on all those numerical methods.

5. Concluding remarks

It is obvious that past advances in nonlinear system analysis have widened the
practical applications of linear system analysis and provided added means to develop
new materials, new designs, and new control mechanisms. It is important that

researchers and analysts follow the traditional scientific methods and validate their
models so that those advances would not be misused.
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Chapter?2

A Review of Nonlinear Control
Strategies for Shape and Stress in
Structural Engineering

Najmadeen Saeed and Shna Abdulkarim

Abstract

Structural engineering plays a pivotal role in ensuring the safety, stability, and
longevity of civil infrastructure. As the demand for innovative and efficient struc-
tural designs grows, the need for advanced control strategies becomes increasingly
apparent. This comprehensive review examines the state-of-the-art nonlinear control
strategies for shape and stress in structural engineering. Recognizing the limita-
tions of conventional linear approaches, the chapter systematically explores diverse
methodologies such as adaptive control, neural networks, fuzzy logic, and model
predictive control. It analyzes their individual and integrated applications in shaping
structural form and managing stress levels. The review considers the intricate inter-
play between shape and stress control strategies, addresses challenges, and proposes
future research directions. Case studies and a comparative analysis offer practical
insights into the performance and adaptability of these strategies. By emphasizing
advances in materials, technologies, and sustainability, this chapter provides a holistic
perspective on the evolving landscape of nonlinear control in structural engineering.
This synthesis aims to guide researchers and practitioners toward innovative solutions
that enhance the safety, resilience, and efficiency of structural systems.

Keywords: nonlinear control, structural engineering, shape strategies, stress
management, adaptive control, sustainability

1. Introduction

At the nexus of innovation and resilience, structural engineering pursues the
continuous development of structures that maximize longevity and performance
while also withstanding external stresses. In this pursuit, the increasing understand-
ing of the innate nonlinearities in structural systems is reshaping the traditional
paradigm of linear control techniques. This in-depth study, “A Review of Nonlinear
Control Strategies for Shape and Stress in Structural Engineering,” looks at the newest
developments in using nonlinear control methods to deal with shape and stress, two
important parts of structural design.

Traditional linear control schemes [1-16], although useful, are not always able to
capture the complex behaviors that are inherent in structural systems [17]. In struc-
tural engineering, nonlinearities can originate from a number of factors, including
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geometric configurations, material properties, large deflections or rotations, and
dynamic loading scenarios [18-21]. These nonlinear phenomena frequently make it
difficult to precisely control shape and manage tension in structures [22]. However,
linear control models depend on assumptions and simplifications, for instance, small
deformations and elastic material behavior, that might not be factual for all structural
states, potentially resulting in imprecisions in performance optimization. As a result
of these drawbacks, scientists are now more frequently using nonlinear control
techniques to manage the complexity of structural behavior [23, 24]. Employing

the nonlinear controlling strategy improves structural efficiency and tolerates the
construction of a more competent and lighter system due to decreasing material
consumption while sustaining essential safety boundaries. Besides, nonlinear control
techniques offer more flexibility in monitoring and adjusting performance in struc-
tures exhibiting nonlinear behavior, leading to more accurate modeling of actual
structural responses.

1.1 Most important nonlinear control approaches

The field of nonlinear control strategies comprises a wide range of techniques, each
with specific benefits for controlling stress [25-27], forming structural shapes [16,
28-30], or both simultaneously [30, 31]. Adaptive control has demonstrated promise
for improving adaptability because of its capacity to modify parameters in response
to changing structural conditions [32, 33]. Fuzzy logic offers a strong framework for
forming structural configurations because of its ability to deal with uncertainty and
imprecision [34]. Additionally, stress management in structural systems is greatly aided
by model predictive control, which is well known for its capacity to maximize perfor-
mance based on predictive models [35-37]. Korkmaz [38] divided the concept of struc-
tural control into three subdomains: active control, adaptive control, and intelligent
control (see Figure 1). Active structural control utilizes sensors and actuators to alter
the deformability and internal stress by modifying the structural response. In adaptive
structural control, the alteration process improves the structural response regardless of
the previous condition of loadings and actions. In intelligent structural control, on the

Structural
Control

Active
Control

Adaptive
Control

Intelligent
Contral

Figure 1.
Structural control and controlling subdomains [38].
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other hand, the controlling process ensures the preservation and improvement of the
structural performance by remembering the changes in behavior and action, adapting

to the current target, and using the earlier events for improvement in future responses.
1.2 Scope of the review

To clarify these nonlinear control techniques’ separate and combined uses in
regulating stress levels and forming structural shapes, this review methodically
investigates them. The subsequent sections will explore the subtleties of nonlineari-
ties in structural engineering in Section 2. It is followed by shape control strategies in
Section 3 and stress management tactics in Section 4, as well as the complex interac-
tions between shape and stress in Section 5. Section 6 will address the field’s chal-
lenges and future directions, while Section 7 will include case studies and applications
from the actual world. The review will close with a summary of the most important
discoveries and a focus on how nonlinear control strategies may influence structural
engineering in the future in Section 8.

2. Nonlinearities in structural engineering

Although structural engineering is based on the concepts of equilibrium and
stability, it deals with intrinsic nonlinearities that have a big impact on how structures
behave [39, 40]. These nonlinearities originate from different causes, including
geometric nonlinearities [41-43], material nonlinearities [19, 44], large deflection
nonlinearities [18, 45, 46], boundary condition nonlinearities [47, 48], and dynamic
nonlinearities [49].

2.1 Geometric nonlinearities

Nonlinearities are brought about by geometric complications, particularly when
working with thin structures or substantial deformations [41-43]. The effect of geo-
metric nonlinearities may be ignored by traditional linear analysis, which could result
in inaccurate predictions of structural reactions [4, 6, 8, 45, 50-52]. To accurately
represent the behavior of structures under different loads, sophisticated geometri-
cally nonlinear models are essential [53].

2.2 Material nonlinearities

The fundamental components of any structure, materials, frequently behave
nonlinearly in a variety of situations [19, 44]. For example, strain-strain correlations
in concrete are not linear, especially in the post-yield zone, where strains may not be
precisely proportionate to stresses [54, 55]. Furthermore, the nonlinearity of steel
materials presents difficulties for linear analysis techniques, particularly in the plastic
deformation region [56, 57].

2.3 Large deflection nonlinearities

Large deflection nonlinearity in structures refers to the behavior where
deformations become significant enough to cause nonlinear responses, deviating
from linear elastic assumptions [18, 45, 46]. Under large deflections, structural
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elements undergo considerable distortion, altering their stiffness and load-carrying
capacity [58]. This phenomenon commonly occurs in slender structures under high
loads or flexible materials [46]. Nonlinear structural analysis techniques are employed
to accurately predict deformations and stresses in such scenarios, crucial for ensuring
structural integrity and safety [45, 59].

2.4 Boundary condition nonlinearities

Nonlinearities also stem from the boundary conditions imposed on structures [47,
48]. The rigidity of connections and supports can influence the overall structural
response. In cases where supports are not perfectly rigid or exhibit nonlinear behav-
ior, the overall structural response becomes intricate and necessitates sophisticated
analysis methods [48, 60].

2.5 Dynamic nonlinearities

Dynamic nonlinearities are introduced by dynamic loading situations, such as
seismic or wind-induced forces, which are difficult for conventional linear approaches
to describe [49]. Dynamic force magnitude and frequency might result in nonlinear
responses, necessitating specialized tactics for precise forecasting [61, 62].

Developing sophisticated numerical models and simulation methods to better com-
prehend and measure these nonlinearities has been the main focus of recent research
projects [19, 26, 60, 63-67]. Computational methods and finite element analysis (FEA)
have helped shed light on dynamic loading situations, geometric configurations, and
nonlinear behavior of materials [21, 68-71]. Experimental experiments have also helped
capture real-world nonlinear reactions and validate numerical models [72, 73].

The nonlinearity of structural engineering in general—which is required to
comprehend how stress and shape control are managed in structures—was covered in
this part. We will now talk about the latest advances in nonlinear control methods and
how they can be used to manage stress and change the shape of structures. This study
takes into account the complicated issues that come up because structural engineering
is not a straight-line subject.

3. Shape control strategies

Shape control schemes have become essential elements in the field of nonlinear
control in structural engineering, as designers strive for exact structural configura-
tions and esthetically pleasing designs. This section delves into many approaches that
support the dynamic shaping of structural shapes.

3.1 Adaptive control for shape modification

Among the many methods for dynamically sculpting structural shapes, adaptive
control is particularly important. Adaptive control ensures that different external
loads and environmental impacts are continuously adapted by changing control
parameters based on real-time structural conditions useful [74-76]. This adaptability
is especially useful in situations where structures that are subject to shifting loading
circumstances or deployable structures need to have their structural configurations
change dynamically over time [38].
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3.2 Neural networks for data-driven shape learning

A data-driven paradigm is introduced when shape control algorithms incorporate
neural networks [77]. Neural networks may learn and adapt to complicated structural
behaviors because they are inspired by complex learning mechanisms [78]. Neural
networks, through analyzing large datasets and identifying nonlinear patterns, pro-
vide a reliable way to shape structures according to past performance and interactions
with the environment [79].

3.3 Fuzzy logic for managing uncertainties in form

Fuzzy logic is used to shape structural configurations because of its reputation
for handling uncertainties and imperfect information [80, 81]. Fuzzy logic offers a
framework for decision-making that takes uncertainties into account in situations
where exact mathematical models may be difficult to develop [82]. When working
with materials that have changing characteristics or complex structural geometries,

this is especially helpful [35, 83].
3.4 Model predictive control for dynamic form optimization

Model Predictive Control (MPC) is a technique that has gained popularity for
optimizing performance using predictive models to shape structural shapes [84, 85].
MPC takes into account restrictions and objectives by using a predictive model of
the structure and iteratively adjusting control inputs to attain desired forms [85, 86].
When sustaining ideal structural arrangements requires real-time alterations, this
approach works well.

3.5 Various examples of applications of structure-based shape control

The pursuit of geometric perfection is essential in the field of structural engineering
for a variety of architectural compositions. Determining nodal points is the first step
toward the reality of architectural forms, from the conception of design to the fulfill-
ment of esthetic quality. This requirement is demonstrated by beams [16, 29, 87-95],
trusses [9, 96-103], and frames [104-106] by linear or nonlinear methods, where
the exact placement of structural components guarantees the effective distribution
of loads while maintaining structural integrity. In addition, the sphere [6, 8, 52, 107,
108], antenna structures [100, 109, 110], egg-shaped structure [4], and dome [3, 5,
15, 111] constructions are examples of architectural achievements where geometric
precision combines with esthetic appeal and practicality to create memorable areas
and famous structures. While cable structures [3, 10-13, 30, 31, 103, 112-119] chal-
lenge preconceived concepts of stability and balance with their intricate designs,
cable structures, with their elegant curves and tensioned forms, epitomize the union
of engineering genius with artistic harmony.

4. Stress control strategies

To guarantee the longevity, safety, and structural integrity of designed systems,
effective stress control techniques are essential. Various approaches used in nonlinear
control to control stress in structural engineering are discussed in this section.
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4.1 Adaptive control for stress management

Adaptive control techniques are essential for dynamically regulating stress inside
structural parts. Adaptive control makes sure that structures can adapt to shift-
ing loads and environmental variables by continuously modifying control settings
depending on real-time stress levels, preventing excessive stress concentrations
[120, 121]. When structural elements are subjected to fluctuating and unpredictable
stresses, this adaptability is very valuable.

4.2 Neural networks for stress prediction and mitigation

A data-driven approach to stress management is offered by the incorporation of
neural networks into stress control techniques. Since neural networks are very good
at learning complicated patterns, they can be used to anticipate the distribution of
stress inside structures [122-124]. Neural networks have a role in stress concentration
mitigation and structural performance optimization through the utilization of real-
time feedback and historical data.

4.3 Fuzzy logic for stress mitigation in uncertain environments

Stress control systems use fuzzy logic, which can handle uncertainties, to govern
structural reactions in unpredictable settings [125, 126]. Fuzzy logic helps decision-
makers reduce stress concentrations and improve structural resilience when external
variables contribute to inaccurate information [127, 128]. This strategy is especially
important in places where environmental uncertainty is common.

4.4 Model predictive control for optimal stress regulation

One effective method for controlling stress in structural parts is Model Predictive
Control (MPC) [129]. MPC uses predictive models to repeatedly improve control
inputs to produce optimal stress distributions while taking goals and constraints into
account [130]. When accurate stress modulation is essential for the longevity and
safety of structures, this approach works well.

4.5 Various examples of applications of structure-based stress control

Various structural domains can benefit from the practical implementation of
stress control systems. These techniques have been used to optimize stress distribu-
tions, improve structural safety, and lengthen the lifespan of crucial infrastructure,
ranging from buildings to bridge structures. For instance, trusses [2, 7, 26, 103], cables
stayed bridges [2] and cable structures [26, 131] by linear [2, 7] or nonlinear [26, 131]
methods. The mentioned examples highlight successful implementations and offer
insightful information on the efficacy and practicality of stress control techniques.

5. Integration of shape and stress control

One of the most important aspects of managing structural integrity and
performance holistically is the relationship between stress distribution and
structural shape [2, 7, 14]. The integration of shape and stress control measures is
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examined in this section, emphasizing the benefits that result from examining these
two factors together.

5.1 Simultaneous shape and stress control strategies

A major development in the nonlinear control of structural engineering is the
merging of form and stress control techniques [31]. Combining control over stress
management with structural form manipulation enables a holistic strategy for
maximizing both performance and safety [7, 10, 11, 31, 132]. To accomplish this dual
goal, a combination of neural networks, fuzzy logic, model predictive control, and
adaptive control can be used [7, 11, 132].

5.2 Dynamic adaptability for form and stress optimization

The integration of form and stress management is largely dependent on adaptive
control techniques [35]. Structures are capable of real-time adaptation to changing
external loads and environmental factors by dynamically adjusting control settings
based on both form and stress conditions [38, 133, 134]. By avoiding both high-stress
concentrations and undesired deformations, this dynamic adaptability guarantees
both optimal performance and safety [135, 136].

5.3 Learning-based approaches for simultaneous control

Shape and stress are simultaneously controlled by neural networks, which are
renowned for their capacity to learn intricate patterns [137, 138]. Neural networks can
optimize the distribution of stress and the shape of the structure by using both past
data and current feedback [137, 139]. This learning-based strategy works especially well
in situations where form and stress have a complex and nonlinear relationship [140].

5.4 Uncertainty management through fuzzy logic

Fuzzy logic is included to help manage the uncertainties in form and stress control
[125, 141]. In the face of imperfect information, fuzzy logic offers a framework for
decision-making that guarantees the robustness of structural adjustments for shape
and stress in unpredictable situations [141]. This method improves a structure’s
resistance to changing and erratic circumstances [78, 142].

5.5 Optimal predictive control for form and stress harmony

Through iterative adjustments of control inputs based on predictive models,
Model Predictive Control (MPC) excels in maximizing both form and stress [143].
By taking into account both form and stress objectives at the same time, trade-offs
between stress management and structural configurations are avoided throughout the
optimization process [144, 145].

5.6 Various examples of application of structure-based simultaneous shape and
stress control

In structural engineering, combined form and stress control have many
real-world uses. These strategies demonstrate the versatility and adaptability of
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concurrent shape and stress control methodologies, ranging from adaptive building
facades that dynamically respond to environmental conditions [7, 10, 11, 31, 132]
while managing stress to aerospace structures that optimize both aerodynamics and
structural integrity [146, 147]. There are some examples of combined form and stress
control, such as beams, trusses [2, 9, 97, 98, 101, 103, 148], spheres [6, 8, 52], antenna
structures, cable structures [30, 31, 103, 115, 116], and domes [5, 111] by linear [6,
8,9, 52,97, 98, 101, 148] or nonlinear [30, 31] methods. The mentioned examples
highlight successful implementations and offer insightful information on the efficacy
and practicality of stress control techniques [2, 5, 6, 8, 9, 30, 31, 52, 97, 98, 101, 115,
116, 119, 120, 148-150].

6. Challenges and future directions

The progression of nonlinear control systems for managing structural shape and
stress within structural engineering will give rise to a multitude of opportunities
and challenges. The challenges currently encountered by the field’s practitioners and
researchers are discussed in this part, along with possible future paths.

6.1 Computational complexity

More computing power is frequently required for the application of complex
nonlinear control schemes [151]. Managing computational complexity becomes an
increasingly important difficulty as systems become more complicated and real-time
responses are required [35]. One persistent issue is manipulating the accuracy of
control algorithms with the effectiveness of computing procedures [152].

6.2 Robustness in the face of uncertainties

Nonlinear control systems face difficulties due to the inherent uncertain-
ties in structural engineering, which arise from variations in the environment,
material qualities, and load conditions [35, 153-155]. Although adaptive control
and fuzzy logic attempt to manage uncertainties, it is still difficult to guarantee
that control algorithms will stay robust in a variety of strange and unpredictable
situations [156].

6.3 Advancements in sensing technologies

Sufficient and timely data from sensing technologies are essential for nonlinear
control techniques to work well [35, 78]. Continuous sensor advances are essential for
improving the accuracy and dependability of control activities [157-160]. Examples
of these sensors include vision-based systems and strain gauges [160]. The develop-
ment of nonlinear control techniques depends critically on ongoing research in sensor
technology.

6.4 Interplay between shape and stress control

Although the integration of stress control mechanisms with shape is a promising
option, there are obstacles to comprehending the complex interplay between these
factors [2, 7, 14, 17]. A thorough understanding of the complex relationship between
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stress distribution and structural form is required to maximize synergy without
compromising individual objectives [17].

6.5 Future directions

Nonlinear control in structural engineering has a bright future ahead of it.
Scholars are presently investigating novel approaches, like the integration of
machine learning algorithms, to augment the flexibility of control techniques.
Opportunities for autonomous optimization of structural configurations under
variable situations are presented by advances in artificial intelligence, specifically
in reinforcement learning. More future objectives for studying nonlinear shape
and stress control are materials innovation, which includes investigating innova-
tive materials as a means of enhancing nonlinear control techniques. Adaptive smart
materials can work in concert with control systems to create new opportunities for
materials that dynamically adjust to stress situations, shape memory alloys, and
self-healing structures [160].

7. Case studies and applications

Analyzing nonlinear control systems for form and stress in structural engineering
in real-world applications offers important insights into the applicability, effective-
ness, and flexibility of these approaches. The impact of successful implementations
on different structural domains is examined in this section through a variety of case
studies.

7.1 Deployable structures for adaptive environments

Deployable structures—whose form dynamically adjusts to changing environmental
conditions—have become more and more popular. Examples of case studies demon-
strate how adaptive control systems allow structures to adjust to Environments for
instance Goliath umbrellas at Nabawi Mosque compound in Medina [161] as shown
in Figure 2. With its deployable structures for adaptable situations, Goliath umbrellas
at the Nabawi Mosque compound in Medina exhibit the inventiveness of structural
engineering. It expands prayer space during busy times, like Ramadan and Hajj, by
using modular platforms and temporary umbrellas. Its adaptable layout guarantees a
smooth transition with the Prophet’s Mosque, allowing for different audience sizes to
be accommodated without compromising the sacredness of the location. It is evidence
of creative structural engineering solutions.

7.2 Adaptive morphable structures

Advanced movable structures, which involved altering and controlling the
geometric shape of the structures with dynamic motion and altering the behavior
of the structures concurrently, were presented at International Expo 2005, Aichi,
Japan [162]. He displayed the massive, mobile monument depicted in Figure 3. Three
similar movable towers with four moving truss components make up this monument.
As aresult of the ease with which shape morphing from well-known traditional truss
structures can be achieved, as demonstrated in Figure 4, the monument’s shape can
be altered to a variety of truss shapes by replacing some of the trusses with linear

17



Nonlinear Systems and Matrix Analysis — Recent Advances in Theory and Applications

Figure 2.
Goliath umbrellas at Nabawi mosque compound in Medina.

VGT Actuator

Karakuri doll device

Initial Position

Full Opening

Figure 3.
Hllustration of the towers displayed duving Aichi, Japan’s international Expo 2005 [162].

displacement actuators [163] and adjusting the length of each extendable member
(extensible actuator) [164, 165].

7.3 Aerospace structures with dynamic morphing

In the aerospace industry, optimizing aerodynamics through the shaping of
aircraft wings and surfaces is largely dependent on nonlinear control systems [166].
For example, Commercial Aircraft Morphing demonstrates how dynamic morphing,
increased fuel efficiency [167], and improved overall performance of aeronautical
structures may be achieved with the help of adaptive control, neural networks, and
model predictive control as shown in Figure 5.
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Figure 4.
Monument shape is alteved based on performance trends [162].
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Diagrams showing the subsystems of the morphing wing gadget [167].
7.4 Bridges with shape and stress optimization

Bridges are an example of vital infrastructure where shape and stress control must
be integrated. The case studies were not available; however, the model was demon-
strated in the lab to demonstrate how control systems maximize the form and stress
distribution of bridge structures [13].

7.5 Tetragonal lattice structure

A shape-morphing control for the space model of a tetragonal lattice system was
a case study test validating the nonlinear force method for large deformation control
and comparing it to the linear force method [168]. The shape-morphing target was

examined in two cases. The first targeting case was approaching the doubly curved
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a. Linear elastic model b. Non-linear elastic model
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Figure 6.

Shape morphing control of the tetragonal lattice structure for the (a) linear and (b) nonlinear methods; nodes
that are to be moved or pinned are shown by the ved circles, and the undeformed structures in the top left corner
of each deformation reveal where the actuators are placed; components in gray are fixed, while those in blue are
expanding, and those in ved are shrinking [168].

surface of the morphing, while the other case was the corner lift of the assembly. In
the doubly curved scenario for approaching the target, it required 159 actuators (n,)
by linear control but 606 actuators by nonlinear control out of 1535 members. This
great difference from used actuators refers to neglecting the member stress caused
by the elongation of other elements. Likewise, for the corner lift scenario, the linear
technique overestimated employing almost the whole body of the system as actua-
tors (N, = 1505), while the nonlinear used 532 actuators for the shape morphing
control. The cases demonstrated that compared to the linear technique, the nonlinear
controlling approach yields the most fitting results for large deformations of complex
assemblies. The findings of both cases are presented in Figure 6 [168].

8. Conclusions and recommendations

A thorough examination of structural engineering’s nonlinear control techniques
for form and stress reveals a vibrant field full of opportunities, difficulties, and
advancements. This conclusion summarizes the main conclusions and shows the
direction for future research.

8.1 Conclusions

The chapter presents a comprehensive overview of the latest developments in
nonlinear control techniques applied to form and stress management in structural
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engineering. By synthesizing research findings, case studies, challenges, and potential
directions, it serves as a roadmap for both scholars and professionals seeking to
propel structural engineering into new realms. The findings of this chapter inspire
the structural engineering community to deepen their grasp and application of
nonlinear control, fostering advancements that will enhance the built environment
significantly.

In essence, the chapter offers an in-depth perspective on the evolving landscape
of nonlinear control within structural engineering. A pivotal approach highlighted is
the fusion of shape and stress control methodologies, which lays the groundwork for
resilient, adaptable, and human-centric structural designs. As we navigate through
this evolving terrain, collaborative efforts among researchers, practitioners, and
experts from diverse fields become indispensable.

The presence of nonlinearities poses significant challenges to traditional control
systems, often built upon linear assumptions. Linear control techniques may inad-
equately capture the true behavior of structures, leading to compromised perfor-
mance and potential safety hazards. Hence, there is a growing imperative to explore
nonlinear control frameworks capable of effectively managing the intricate nonlinear
dynamics inherent in structural systems.

8.2 Recommendation

Nonlinear control in structural engineering has a bright future ahead of it.
Advances in machine learning, material innovation, and sustainability are areas that
researchers are encouraged to investigate. The unification of reinforcement learning,

artificial intelligence, and smart materials promises revolutionary discoveries that are
in line with the changing needs of the built environment.
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Chapter 3

A Type-2 Fuzzy State Observer
Model for Non-Stationary Dynamic
System Identification: An
Incremental Learning Method with
Noise Handling

Anderson Pablo Freitas Evangelista
and Ginalber Luiz de Oliveira Serra

Abstract

Real-world identification involves dealing with challenges such as system
complexity, noise, and uncertainties. In this context, a method for incremental
learning is suggested, utilizing an evolving type-2 state observer fuzzy model. The
process involves structure learning through an evolving type-2 multiscaling clustering
approach, eliminating the need for data normalization. The estimation of linear state
observer models for each rule is achieved using observer Markov parameters com-
puted via a Type-2 Instrumental Variable (T2-IV) algorithm. For obtaining the
instruments for the T2-IV algorithm, a recursive moving-average filter is used.
Benchmark and online identification tasks are conducted to demonstrate the practi-
cality and robustness of the proposed methodology, with performance comparisons
against existing methodologies.

Keywords: type-2 fuzzy state-space modeling, incremental type-2 fuzzy learning,
multidimensional learning approach, markov parameters, type-2 instrumental
variables

1. Introduction

Machine learning-based identification system is a relevant approach for modeling
nonlinear, uncertain, multivariable, and complex systems. This approach aims to
estimate a model that represents accurately the dynamic behavior of a real plant [1].
In these terms, fuzzy identification arises as a relevant method for obtaining models
which represent nonlinear systems. These techniques are shown a powerful tool in
practical problems such as uncertainty, unpredictable dynamics, and noisy measure-
ments. One reason is that fuzzy logic systems (FLS) have the ability to integrate
information from different sources, such as physical laws, empirical models, or
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measurements [2]. For identification of problems with white noise signals, the classi-
cal fuzzy sets (type-1) present satisfactory results. However, when colored noise is
considered, type-1 fuzzy sets are not able to mitigate the noise effects. In this case,
type-2 fuzzy systems were proposed. The first mention of type-2 fuzzy sets as an
extention of classical fuzzy sets was made by Zadeh [3], where theoretical concepts
were addressed in the 1990s by Karnik [4]. In practical application, the interval type-2
fuzzy sets gained prominence in problems such as control [5] and modeling [6], as it
presents less computational load. However, the development of methodologies for the
experimental data analysis in order to obtain the rule-base for an interval type-2 fuzzy
model in order to use the advantages of type-2 fuzzy sets described in the literature is
still an open research field. In the literature, approaches such as heuristic methods [7]
and incremental learning [8] have been used for this purpose. In Aissa Bencherif and
Fatima Chouireb’s work [9], an incremental learning algorithm for type-2 recurrent
Takagi-Sugeno neural-fuzzy network is proposed. For structure learning, the rule
firing strength-based approach is used. For a new data, the type-2 firing strength is
computed for each rule, where the rule with the highest firing strength is considered
for creation rule mechanism. The parameter update is perfomed by gradient descent
algorithm. The mobile robot trajectory tracking problem is used to show the applica-
bility of the methodology. In [10], Morteza Montazeri-Gh and Shabnam Yazdani
introduce the use of interval type-2 fuzzy logic systems for gas turbine fault diagnosis,
aiming to reduce maintenance costs and downtime. Fuzzy Rule Base is estimated
using Interval Type-2 Fuzzy C-Means clustering, and parameters of the IT2FLSs are
optimized with a metaheuristic algorithm. The performance of the IT2FL-based FDI
system is compared to other classification techniques, showing promising results in
terms of online applicability, accuracy, and robustness.

In literature, linear models are commonly used in consequent part in Takagi-
Sugeno models, such as vector auto-regressive and state-space models. The state-
space models present an interesting feature: a compact formula that that shows the
relationship between internal variables and the experimental data (output and input
signals) [11]. In this context, methodologies based on fuzzy state-space models have
been proposed [12, 13]. In Gil et al.’s work [14], a recurrent state-space neural-fuzzy
network is introduced. For parameter adjustment of the antecedent/consequent parts,
a recursive learning method based on the constrained unscented Kalman filter is
employed. The applicability of this methodology is demonstrated through the online
identification of a three-tank system. In Yancho et al.’s work [15], a fuzzy state-space
model predictive control approach is proposed. The learning algorithm is founded on
gradient descent, which is used to fit the modeling structure parameters. The trained
model is subsequently applied in model-based predictive control. The applicability of
this methodology is demonstrated through computational experiments.

In identification problems, efficiency in mitigating the effects of noise to adjust the
consequent parameters must be ensured. In a noisy environment, the Instrumental
Variable (IV) method is considered a relevant tool for system modeling [11]. When
compared to other identification methods, it is noted that, in the IV method, the
requirement for an accurate noise model is not essential [16]. According to literature,
the accuracy of the IV method relies on the selection of an appropriate instrument,
which must guarantee non-polarized estimation [11]. The fuzzy version of the IV
method was introduced by Yancho. Therefore, with the aim of integrating the type-2
state-space fuzzy modeling and non-polarized consequent estimation, in this paper,
an incremental learning for evolving interval type-2 state observer fuzzy model based
on instrumental variables approach is proposed. For estimating the consequent-part,
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fuzzy observer Markov parameters are computed via type-2 fuzzy version of instru-
mental variable (T2-IV) identification algorithm. The observer Markov parameters
are then used to compute the local system states at the current instant, which are
subsequently used to compute the matrices of the local linear state observer model.

1.1 Contributions
The proposed methodology presents the following main contributions:

* Proposal of an evolving interval type-2 fuzzy state observer modeling approach
with non-polarizing consequent estimation.

* Proposal for a novel composition of type-2 fuzzy rules for estimating an
uncertain region. The adjustment of the uncertain region is accomplished
through a proportional-integral-based adaptation rule.

* Structure learning based on the multiscale approach, where the data
normalization is not required in clustering algorithm.

* Novel state-space online nonlinear identification based on interval type-2 fuzzy
observer Markov parameters.

2. Overview of interval type-2 state observer fuzzy model

The proposed methodology is based on an evolving interval type-2 state observer
fuzzy model (eIT2-SOFM), where its rules can be described as follows:

Rule : IF 2, is Z; AND---AND 3, is Z, 'THEN
X§e+1 = A"xfe +Bw, +Ke, (1)
Vi, = Cixfe + Diu,
where i = 1, 2..., ¢ represents the rule number, and 244,22k, ... , 24, correspond to
the antecedent input variables, where 7, is the number of antecedent variables. Addi-

tionally, Al e RV B e RV, C e RV, D' e RP*™ and K € R represent the
state-space matrices of the local linear model for each rule. The local state vector for

the i-th rule is denoted as x}, = [x’l > X > e s XL k} € R”, and the local output vector is
y, = [y’l oV > ,y; k] € R?. The input signal vector is represented by
uk = [ul,k, U, ..ty p] €ER™, and e, € R? is the error vector given by

€ =Y, — Vi 2

where y, is the type-0 eIT2-SOFM output estimation in the eIT2-SOFM. An inter-
val type-2 Gaussian membership function is adopted, represented as ﬁ]’: = {ﬁ]’, /i]’} , with

uncertain dispersion denoted as 6 = [Ei, g’} , described by
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i i, % 27
, 1 (2" —z
% (zix) = exp ~5 <J?]> 3
j

i, % 27
i 1(%5 —73
#(zjx) = exp —§< > ) (4)

where /71’ and ;_4; are the upper and lower membership functions, respectively, ﬁ]: is

the upper dispersion, g}' is the lower dispersion, and z]’* is the center of i-th cluster
and j-th input axis. The proposed eIT2-SOFM adopts interval output estimation

V., = [yk, Xk} as the output model. To compute the eIT2-SOFM output, first, the

interval firing strength [fl f ;J is computed as follows:
=117 (5)
=1

fi =11 #w) ©)

and from interval firing strength, the upper and lower normalized firing strength

{7};, L’J is computed as follows:

T = f = @

> f
fi

S (8)

o f
and [y},y,] is computed as follows:

Ck .

Vi =2 Tk ©)
i=1
Ck . .

Vi =2 7Dk (10)

Uy

Thus, in the function of [y}, y}], the upper and lower outputs are computed using
the following equations:

Y. = max(y,,y,) + Vi (11)
y, = min(y},,y;) = Vi (12)

where y, is the adaptive output degree of uncertainty, which is adjusted based on
the digital PI control algorithm, given by
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Ve Sy for y, <yi|, <V
- .
Ve Vi Jrgp|ele| +g; Zf:k,wek’ otherwise (13)
such that
Ve tY
e =y, — ot (14)

where 1<f £<090isa adjustment factor, g, and g; are the proportional gain and
integral gain, respectively, w is the window size, and Yk‘f is the filtered output in
instant & computed in the filtering process (Section 3). The proposed incremental
learning is performed by the following steps: 1) filtering process, 2) structure learning
via evolving method, and 3) submodels updating via type-2 state observer fuzzy
identification. In Figure 1, the block diagram of the proposed methodology is shown,
where y,| _is the corrupted output data in instant k. In the next sections, the mathe-
matical formulation of each step is presented.

3. Filtering process

Consider a dynamic system where its experimental data are corrupted by correlated
noise. For a data-driven learning algorithm, the noise in the database is a problem,

{ Dynimic System ]

Vel Wil
Y

Yielr ke ¢

{ Fillering Process

Chaster Creation

] [ I'ype-2 Markow ]‘

. N el
Parameters Estimation J:

Mergin Mechanism
state space vector

_’{ Computation of fuzzy ]

:—»[ el T2-SOFM

{ Adaption Mechanism ] State space H
: submodels Estimation

:Evnlving Multiscale Type-2 Recursive consequent

\Fuzzy Clustering Algorithm estimation via Type-2

H Instrumental Variables

INTERVAL TYPE-2 STATE SPACE FUZZY MODELING

Figure 1.
Block diagram of the proposed methodology. From the dynamic system, output y, | and input w, data are obtained
and filtered. For the evolving process, the antecedent input vector z,, is generated from the filtered input and/or

output, that is, z, = [ykﬂ |f---ykfl\f Up_ 1 [fn-j,H }f] From vector zy, the evolving mechanism (creation, type-2

adaptation and merging) performs the structure learning, which chances the number of rules in each incoming
data. In the sequel, the submodel of each rule is updated by a type-2 fuzzy state observer identification algorithm.
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once inconsistent cluster (fuzzy partition) and polarized submodel parameter can be
computed. Therefore, in the proposed methodology, a filtering process is performed in
order to compute data highly correlated with system dynamic and independent of noise.
In this step, a recursive moving-average filter are used, where

J’kL‘ =(1- “f)4yk‘r + 4“f}’k—1Lf - 6ﬂf2yk—2’f + 4”;3%—4[ - “f)’k—4‘f (15)

where ay € (0, 1) is the filtering coefficient chosen by the user. For input data, the
filtering process is similar, as follows:

uka =(1- “f>4uk‘r + 4ﬂfuk—1'f - 661]%7/%72 ‘f + 4ﬂ;uk—3\f - ﬂf”k%’f (16)

From J’k|f and u |, the vector z, is generated, which is used in structure learning,

and the regressor vector 8, which is used for consequent estimation.

4. Structure learning via evolving type-2 fuzzy clustering method

The structure of the eIT2-SOFM is updated with each new incoming dataset, and
the adopted learning method does not necessitate prior knowledge. In other words,
the rule base initializes with zero rules. The structure learning relies on an evolving
type-2 fuzzy clustering (eT2FC), which is employed to create a fuzzy partition in the
input variable space. This clustering method projects an interval type-2 fuzzy set onto
each input space axis, characterized by interval type-2 Gaussian membership func-
tions with uncertain dispersion. The eT2FC algorithm is based on a multidimensional
scaling approach, eliminating the need for data normalization and providing
improved handling of non-stationary problems [17].

Initially, for instant £ = 1 and the number of rules ¢, = 0, the antecedent input
vector zj, = |21 2o +%n, | € "™ becomes the center of the first cluster, with an
initial type-1 dispersion o defined by the user. The dispersions E]’: and g]’: are computed

as a function of ¢’ as follows:

o =0c+Co 17)
o =0—Co (18)

For k > 1, the interval type-2 membership values /1]’-' = [/Tt]’, ,Ll]’} are computed using

Egs. (3) and (4), and the interval firing strengths [f;, jje] are calculated using Egs. (5)
and (6). The mean between f " and f is computed by

 Fotf
f=toh (19)

and it is used for the cluster creation (rule creation) mechanism, which described
in the sequel.
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4.1 Cluster creation rule

To determine the necessity of creating a new cluster, initially, examine the cluster
x with the highest membership value, that is,

y = arg max]f;e (20)

ie [l, Ck
Therefore, the condition for rule creation is defined as follows:
IFff < T THEN z%"1* = g, (21)

where Ty represents the firing strength threshold. When the condition for rule
creation is satisfied, the vector z;, becomes the center of a new cluster (cluster ¢, + 1).
The type-1 dispersion for the new cluster is determined by

11 :
ot = a‘zj,k gy ‘ 22)

where dispersion EJ’ and g]’ are computed by Egs. (17) and (18), respectively.

4.2 Merging mechanism

Once the creation rule (21) is satisfied, the merging condition is checked. This

mechanism verifies if the new membership function ﬁ;"fﬂ is redundant. First, it

determines the closest membership function to ﬂ;’*“, ie.,

i, % 2

1 (2" —3;

€ =arg max exp|—= <]T]> (23)
J

ie(1,c 2

where i # ¢, + 1 and ¢ is the index of the closest membership function. Therefore,
for the membership functions ¢, + 1 and ¢ along the j-th axis, the similarity degree is
verified as follows:

1% _ex\ cp+1( e x ef crt1, %
S(z e ) = max( (g ) (57 =
where ,u;”l (zj( ’ *) and 4 (z;”l’ *) are computed as follows:
- . o
. 1 Z:?’* _Z{‘k+l,4
el e\ _ s ) J
B e) = exp| =3 ( - 25)
_ -
1 Z%Jrl’* _ Zg,*
ef crtl, o - ] ]
B (5) = exp| -5 (7&“ (26)
j

From a upper threshold T, and lower threshold T; defined by user, the following
conditions are verified:
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1.If S> T, the new membership function is replaced by ,u;”l (z]g * )

2.If T)<S<T,, the two membership function must be merged.
3.If S < T}, The new membership function is maintained

If condition 2 is satisfied, the following equations are used for computing the new
center and new dispersion

cp+1 I i
5 N

V== (27)
1+ Nl’g
c+1 i
IV — O}k + O-JZ (28)
NG

where N; is the number of points (z) associated with the cluster i.

4.3 Cluster adaptation mechanism

In the antecedent parameters adaptation, the approach adopted is to update the
cluster center with the highest membership value when the new cluster condition is
not satisfied. Thus, the updating of the center z*°* is given by

5 % 4
_ zik Ny Zjk

= (29)
Ny +1 Nj+1

i =+ o8z -2 (30)

7> Ve

where p is a learning rate defined by user and Az is the center adjustment.

5. Submodels updating via IV-based type-2 fuzzy state observer
identification

The state-space equations are regarded as the consequent part in the proposed

elT2-SOFM. The estimation of the matrices A?, B}, C', D', and K’ is based on the fuzzy
observer Markov parameters, where its mathematical foundations for the type-1
version are detailed in the works of [13, 18, 19]. This paper presents a type-2 state-
space fuzzy modeling approach that utilizes the observer Markov parameters esti-
mated through the IV fuzzy method. The subspace approach is employed to estimate

the matrices A?, B}, C!, D', and K’ from the observer Markov parameters of each rule.

5.1 Mathematical definition of type-2 fuzzy observer markov parameters

Considering a vector auto-regressive model to estimate the local state-space model,
as follows:
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_NR i)
Ve = Z S Wej+ &5 Vi (31)
j=0 j=1

According to [20], if the local state-space model is asymptotically stable, the
matrices EZ(:;-) and Ez(fj) in Eq. (31) are the observer Markov parameters of i-th local
state-space model, being

i) _ D’ ifj =0 32)
U daY B ifj>0
> i APV e
5" = ci(ay K (33)

where K’ € R"? is the local observer matrix [13]. Thus, the matrix composed by
the observer Markov parameters matrix is given by

i ot () b () i) =i ()
E = [:k_qp, s B By o :.k_l] (34)
and Eq. (31) is rewritten in matrix form as follows:
iNT iNT [ T
()" = 6" (&) +& (35)
. iNT _T T —1 T
with (6,)" = w, W (yk_qp) , such that
l.l]z_q]7 Y;e—qp
_ Uy— 1 i g
W, = 9+ gy = Yie—q,-1 (36)
W1 Y;eq

Assuming k samples, where g, is the past time-window and k > g,,, from Eq. (35),
the following batch equation is derived:

Y, — Al (s")T (37)

where

() (5,4)
23 = (YQP.JJ)T ) A;‘e = (6; +2)T (38)
)" @)

Thus, considering the TSK fuzzy theory, the batch computation fuzzy model
output history is given by
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Y, — ; i (2)" (39)

where f‘; = diag( {ygp 41 ;7;17 FUYRI }7};} ), so that ;7;17 .1 is type-2 normalized firing
strength computed by
~i fk +Jfk
Tk

YR

Thus, from the batch estimation approach, the outputs from instant g,, to k can be

(40)

computed by:
~ _ =i\ T
I,Y, = A, (: ) (41)

where

(quJrl) '

T
Vo= | () (42)
T
(v2)
5.2 Fuzzy observer markov parameters estimation via IV approach

Assuming experimental data are corrupted by correlated noise, the vector &, pre-
sents noisy data, that is,

8, =8, +uy (43)

where v, is the correlated noise vector related to ;.

T
According to literature [21, 22], from an instrument vector (62) , which is highly
correlated with output and/or input data and not correlated with the noise, the

following solution for Ei, from Eq. (41), is derived:
=i\ T i -1 e
(&) = (alfia;) Ay, (44)

where Ai e R(-4-1)x(4,07+2)+7) i the batch instruments matrix. Extended the
recursive type-1 fuzzy IV algorithm presented in [21, 22] for the type-2 case, the
updation of the interval type-2 fuzzy observer Markov parameters is performed by
following equations:

LA

S/ S (45)
7i + (8,)"Pi5,

i _ o~
L1 =7

i i > .
S =B t el (46)
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. 1 . ,
P;e+1 :B {I - }e+l (62)T] P;e (47)

where 1< <0.9 is the forgetting factor, L is the IV gain matrix, and P is the IV
variance matrix.

5.3 Computation of space state matrices

According to [23, 24], the local state vector x}, can be computed by the following
close-formula:

x, = S[A®,, +1i7., | (48)

where S € R"* "~ is a positive-defined matrix, and A}, and Y, are formed by the
observer Markov parameters, such that

g g g -

Sk—q kg, +1 Sk—q,+q,—1 Se—1

) 0 s () ) =i»(%)
A, = Sk—q, =k—q,+q—2 Sk—-2 (49)

' s s

0 0 hy - B

and
20 gi0) ih(0) ih(0)
Sk—q  Zk—q,+1 g, +q;—1 S
, 0 g0 gl . =

Y, = Zk—g, Sk—q,+4;-2 k-2 (50)

=b0) =h0)

0 0 i, - B,

Once the local state vectors x}, are computed, the fuzzy state vector X;, is obtained
as follows:

93
X, =Y X (51)
i=1

From Eq. (51), the matrices [A}, B}, K}] can be estimated using the QR solution.
Thus, the state equation is formulated as follows:

(a3)" o
) =[x wl, ]| @) | =6 e e
(k)"

Let the least square solution of Eq. (52), given by:
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i T < R
(0;)" = (ViliVi) Vil X (53)
(@) = (P,f’? ) “p- (54)
o
where
T
Xy,
T
Xk = kaqPJ’l (55)
x;
Rewritten Eq. (53), it has
o, ix\T _ p®.
P% |, (0 =P y (56)
where the following recursion is derived:
; ; i xi \T
P]?x w = P]?il w + ViVe-1 (VkLl) (57)
o o i xi T
Py = Pkf1‘ + (Y1fe—1) (58)
vy
Thus, by applying QR factorization to P®k|uv, it has
R(0%)" = QTP y (59)

The matrix ®" is computed through the backward substitution method in Eq. (59)
[21]. To compute the [C},, D] matrices, the output equation can be formulated as
follows:

"= [ ] o= () e

Using the same steps for computing (@ZX)T, it has

Py |..(07)" =P} (61)
wf
such that
(A (X iy i \T
P =P + }’;e"},e’i1 (VJI::il) (62)
o o i i T
P |y =Py +70 <Y1fe—1> (63)

vy
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where @Z’y can be computed by applying QR factorization to P k|uv, such that
R(©7)" =Q Py (64)

followed by backward substitution applied in Eq. (64).

6. Computational results

Considering the mathematical formulation of the proposed algorithm described in
Sections 4 and 5, two case studies are presented: the identification of a SISO nonlinear
system and online identification of a time-varying MIMO dynamic system. To validate
the results, the following metrics were used:

¢ Non-dimensional error index (NDEI):

1 N /-~ 2
VN > ke=1(Erie)
NDEI = +——= o (65)

where std(*) is the standard deviation.

* Variance accounted for (VAF%):

é,
VAF(%) = [1 - (y)] x 100 (66)

where var(®) is the variance.

where ¢, is the confidence region error for interval type-2 estimation, which is
described as follows:

0 ify, <y, <m
e = Ve —)llk ife,<e, (67)
Ve —y, otherwise

such that

&=l — Il & =1 =7, (68)

6.1 Nonlinear dynamic system

The identification problem under consideration is a SISO nonlinear dynamic sys-
tem, commonly utilized as a benchmark in the type-2 fuzzy modeling literature. It is
described by the following equation:

_Je-Vr—2 (71 +0.5)

+ Uy (69)
1+ye i '

Dk
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where the input signal is given by u;, = sin(3%). For the identification process, a
dataset consisting of 1300 samples was generated. Among these samples, 1000 were
allocated for the training step, while 300 were used for the validation step. The
algorithm parameters were configured with the following values: ar = 0; Ty = 0.002;

T.=07T1=05¢q,=15¢=6n=2w="5g,=10"%f, = 0.9% andg, =107,
The rule structure adopted in this experiment is

Rule’ : IF z,;, is Z; AND 2, is Z, THEN
xi | = A'xl + B'u, + K'e, (70)
y, = C'x} + D'u,

where 21, = u, and 2, = y,,.

For comparative analysis, the models eTS [25], xTS (cited in [26]), DENFIS [27],
eTF [28], eMG [29], and RIV-NFM [22] are considered. The performances, as assessed
by the NDEI metric, are presented in Table 1. Figure 2 illustrates the uncertain region
estimated by eIT2-SOFM for the validation dataset.

Model Rules NDEI
eTS [25] 7 0.1038
xTS cited in [26] 7 0.0936
DENFIS [27] 7 0.0842
eFT [28] 7 0.0653
eMG [29] 7 0.0501
RIV-NFM [22] 6 0.0413
Proposed 3 0.0203
Table 1.

Comparative analysis of the proposed methodology with other relevant methodologies for the nonlinear dynamic
system problem.

[Uncertain Region
—real

1050 1100 1150 1200 1250 1300
samples

Figure 2.
Uncertain region estimation for nonlinear dynamic system identification.
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6.2 Time-varying MIMO dynamic system
A time-varying nonlinear MIMO dynamic system is considered to demonstrate the
adaptability of the proposed methodology for time-varying dynamic systems. The

nonlinear MIMO dynamic system is described by the following equations:

Vik—1 1

v = +u?
Vi, = . vip+1 03, +5 o (71)
V2ger1 = 0109011 — 0.202 U2,
Vi = Givie (72)
where
1 -1
for k <1400
-1 2
G, = (73)

3 2
s otherwise

and w, = [uq1, uz,k]T, where u, ;, is a multistep signal with a uniform distribution
between [—2, 2], u,, is a multistep signal with a uniform distribution between [—1 1],
and v, = [v1, vz,k]T represents the vector of intermediate signals. The outputs signals
were corrupted by correlated noises, which are given by

1+0.2z71

YT 14065 1+ 025 2% (74)
, 1402271
v e gl (75)

where ¢, represents white noise with a mean of zero and a variance of 2. The
dataset comprises 2800 samples, with 500 used for initializing the eIT2-SOFM and
2400 samples used for online identification.

The algorithm parameters were set to the following values: ar = 0.9; Ty = 0.001;
T.=07T1=05¢q,=12q; =7;n=4w=1g, =5x 107 f; = 0.985; and

g, =3 x 107°. The rule structure adopted in this experiment is

Rule : IF 2, is Z; AND 2, is Zy AND z3 is Zy AND 2, is Z,

x . =A% +Bu, +Ke, (76)
THEN{ 7 7 7F
v, = C'x, +D'u;

where 21, = #1 -1, 224 = U2 k-1, B3 =Y1p 1> and 24, =Y 1

In this case, the Monte Carlo method was employed, involving 50 experiment
realizations to compute the means of the VAF% and NDEI criteria. The interval
estimations of y, and y, according to the SNR variation, are shown in Table 2. The
online estimations of the time-varying nonlinear MIMO dynamic system outputs, are
shown in Figure 3, with an SNR of 10 dB.
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VAF% (+std?) NDEI
SNR N Y2 N Y2
10 95.83 (+1.34%) 95.10 (£1.91%) 0.210 0.202
15 96.34 (+0.86%) 95.61 (+0.92%) 0.202 0.191
20 96.62 (+0.57%) 95.80 (+0.58%) 0.193 0.188
25 97.01 (£0.41%) 95.93 (+0.53%) 0.186 0.181
30 97.27 (£0.23%) 96.16 (£0.44%) 0.179 0.169

“std: standard deviation.

Table 2.
Estimation performance of the proposed methodology for different levels of noise for VAF and NDEI metrics in
time-varying nolinear MIMO dynamic system modeling.

25 [ Uncertain Region
—Real
20 Nosy Signal

Value

220 Change in Gk
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
samples
(a)
25 [Uncertain Region
—Real
20 Nosy Signal

Value

220 Change in Gk

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
samples

(b)
Figure 3.
Upper and lower estimation of time-varying nonlinear MIMO dynamic system: (a) y, and b) y,. The SNR for this

experiment was 10 dB. It is noted that the estimation accuracy of the proposed methodology even in noise
environments. The purple region was estimated by the eIT2-SOFM based on the experimental data.
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7. Discussions

In this paper, aspects of the proposed methodology were presented. The application
of eIT2-SOFM for the nonlinear identification of SISO and MIMO dynamic systems was
discussed. In Section 6.1, a modeling benchmark problem was used to compare the
performance of eIT2-SOFM with other methodologies presented in the literature. Upon
reviewing Table 1, it becomes evident that significantly improved results are achieved
by the proposed methodology. Additionally, it is noteworthy that only three rules were
created by eIT2-SOFM during the identification process, making it the model with the
fewest number of rules among the compared methodologies. This result highlights the
methodology’s ability to track the nonlinear behavior of dynamic systems.

In Section 6.2, a case study involving a nonlinear MIMO system was presented to
demonstrate the tracking capabilities of the proposed methodology in dealing with
time-varying problems. The performance results, as shown in Table 2, indicate that
the eIT2-SOFM achieved a performance exceeding 95% for each SNR value. This
underlines the adaptability of the proposed learning algorithm, even in the presence of
correlated noise within the dataset.

8. Conclusions

Considering the experimental results and the methodological aspects of the
proposed modeling approach based on eIT2-SOFM, the following concluding remarks
are made:

* The proposed method demonstrates robustness to outliers and noise through the
incorporation of a filtering process, type-2 fuzzy sets, and the T2-IV algorithm.
The filtering process precedes the structure learning step to prevent the creation
of nonrelevant rules, while the T2-IV algorithm provides a nonpolarized
estimation of the local state observer model parameters.

* Numerical robustness is ensured, as the QR-decomposition is applied to compute
the local state observer models.

* The computational results have demonstrated that the proposed methodology is
effective for modeling complex dynamic systems characterized by uncertainty,
nonlinearity, and both single and multivariable aspects, even in the presence of
colored noise.

Among practical projects and problems that can be solved by the algorithm, the
following has been widely considered for research:

* Black-box model-based control, where the plant presents nonlinearity, uncertain
behavior, and correlated noise, as satellite positioning [30], multimobile
manipulator, and induction motor.

* Computational modeling of experimental data, where the data are nonlinear,
uncertain, and/or corrupted by correlated noise, such as parameter estimation of
vehicle dynamics, mechatronic systems, mobile robot navigation, and
nonstationary processes [31].
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Chapter 4

Bringing Data Converter Pairs into
Chaotic Oscillation for Built-in
Self-Test and Entropy Generation

Sergio Callegari

Abstract

A pair comprising an analog-to-digital converter (ADC) and a digital-to-analog
converter (DAC) can enter chaotic oscillation when closed in a feedback loop with a
limited set of additional elements. This phenomenon can be employed for entropy
generation in true random number generators (TRNGs). Additionally, the oscillation
can expose defects in the components’ operation, providing an opportunity for built-
in self-test (BIST). Reconfigurable loops sustaining self-oscillation characterize the
oscillation-based test (OBT) approach, appealing for not requiring resources to excite
the blocks under test (BUTs). While OBT has been applied to various signal
processing primitives, its use in data converters has been mostly confined to specific
subsystems or variations of servo-testing. Here, it is shown that chaotic OBT of data
converter pairs may offer insights on their input-output characteristics, while provid-
ing entropy generation at the same time. A PIC microcontroller, together with an
external DAC and some operational amplifiers, is used as a test bed to validate the
approach’s scope and demonstrate its applicability to real-world systems.

Keywords: analog to digital converter (ADC), digital to analog converter (DAC),
oscillation based test (OBT), built-in self test (BIST), entropy source, chaotic map

1. Introduction

The possibility of purposely obtaining complex dynamics from electronic systems
dates back to the early 80s, marked by the introduction of the Chua’s circuit [1].
Notwithstanding previous evidences of complex behaviors in oscillators and filters
[2], the absence of simple, reproducible examples had previously relegated chaotic
phenomena in electronic circuits to the realm of curiosities or misbehaviors. Soon
after, another milestone was marked by the advent of discrete-time circuits utilizing
chaotic maps [3, 4] which enabled a drastic simplification of the adopted models.
Specifically, the restriction to the subclass of piece-wise affine Markov (PWAM) maps
enabled the application of advanced mathematical tools for analysis and (to some
extent) design [5, 6].

Early applications of chaos in electronics encompassed stochastic artificial neural
models [7], secure and broadband communication [8], the synthesis of spreading
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sequences for CDMA systems [9], and the disruption of periodic behavior to reduce
electro-magnetic interference in switched-mode and digital systems [10].

Relevant to this chapter, another early envisioned application of chaos was in
synthesizing excitations for testing frameworks, especially for analog and mixed-
signal circuits [11, 12]. In this context, chaotic waveforms may offer distinct advan-
tages, including their broad frequency content, which can expedite evaluations and
unveil issues not apparent with classic test signals. Almost contemporary to this, the
testing field witnessed the introduction of the oscillation-based test (OBT) framework
[13, 14]. OBT entails minor circuit modifications activated during the test phase,
inducing sustained oscillations in the block under test (BUT) to identify faults or
defects. A key advantage lies in resource savings, eliminating the need for a test signal
generation unit. OBT has been successfully applied to various signal processing blocks,
such as filters, amplifiers, and modulators [15]. Shortly after its introduction, the
proposal of chaotic OBT came as an appealing extension [16].

A further significant application of chaotic dynamics is entropy generation for true
random number generators (TRNGs), which gained prominence amid increasing
concerns regarding the vulnerability of pseudorandom number generators (PRNGs)
in security applications [17, 18]. Curiously, there is evidence that some TRNGs circuits
ultimately deriving their properties from chaotic dynamics have been proposed even
without realizing this fact [19]. Unfortunately, a significant hurdle in incorporating
chaos-based TRNGs into computer systems lies in their inherently analog nature. This
challenge can be mitigated by basing their architecture on analog or mixed-mode
building blocks that are already well accepted in predominantly digital chipsets. Sub-
systems derived from data converters emerge as excellent candidates given the
established practice of integrating analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) IP blocks in systems on a chip (SOCs). Indeed, at the begin-
ning of the century, the recognition that the quantization ervor function of ADCs could
serve as a foundation for chaotic maps led to TRNG proposals based on coupled ADC
and DAC stages [20, 21]. The use of complete ADC and DAC pairs is also feasible. Even
if it might not result in the most streamlined architectures, it has garnered attention
for the convenience in repurposing building blocks that may be readily available with
spare capacity [22].

The premises presented so far suggest the existance of an interesting research area
at the convergence between different applications of chaotic dynamics in relation to
data converters. The use of ADC and DAC pairs as chaotic oscillators can at the same
time establish the foundation for both entropy generation and the OBT of these
components. In fact, a versatile three-way operation may be obtainable by a
reconfigurable architecture where ADCs and DACs pairs can serve either in their
conventional data conversion roles, operate in an OBT-type built-in self-test (BIST)
mode, or contribute to populating entropy buffers for TRNGs. The latter two tasks
can, to some extent, be performed concurrently.

While OBT has already been proposed for data converters, it remained mostly
confined to specific subsystems thereof or to variations of the so called servo-testing
technique [23, 24]. In this work, the goal is to get insight into their overall input-
output relationship. Furthermore, chaotic excitation has been previously proposed for
the test of ADCs [12]. Now, the challenge is to have an excitation that gets itself
conditioned by the non-idealities of the converter, potentially amplifying the possi-
bility to reveal them. A possible limitation of the concept is that ADCs and DACs need
to be tested in pairs, complicating the attribution of the observed effects to defects in
the one or in the other. Furthermore, once one has a converter pair, traditional testing
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based on digital vectors might appear a straightforward choice. Yet, OBT can save the
resources required for storing or computing test sequences. Additionally, the pro-
posed concept has the unique advantage of joining testing with entropy generation.
The chapter is organized as follows: Section 2 illustrates the theoretical principles
inherent in bringing ADC and DAC pairs in chaotic oscillation; Section 3 illustrates
applicability to entropy generation; Section 4 describes how to take advantage of the
oscillations for OBT and built-in self-test (BIST); finally, Section 5 provides experi-
mental results obtained on a microcontroller SOC. A PIC microcontroller, together
with an external DAC and a few other components, is employed as a flexible test bed
both to provide a tangible example and to prove applicability to real-world systems.
Some conclusive remarks are eventually drawn together with hints at open problems
and possible developments.

2. Chaotic oscillation of data converter pairs

To induce chaotic oscillation in a data converter pair, it is sufficient to establish an
autonomous discrete-time one-dimensional (1D) dynamical system, as depicted in
Figure 1. The current state, stored in the analog register AR, is processed into the next
state by a map derived from the quantization error function e(-) of the ADC. Its
computation involves the DAC, as shown in the upper signal path in the figure.
Formally, the model is:

Xpi1 = M(x,) = ae(x,) +b = al(q(x,) —x,) + b, (1)

where x, is the state x at time #. The quantization function ¢(-) is obtained as
fpac(@n), whered,, = f ,pc(x,) is the digital (discrete) version of x,, and f y () and
fpac(:) are the input-output characteristics of the ADC and DAC, respectively. The two
converters share compatible resolutions and the same analog range. The parametersa (a
gain such that 2| >1) and b (an offset) need to be selected to ensure that an interval
[xL,xg| remains invariant through M(-), acting as an attractor for system trajectories. To
exemplify the concept, let the ADC and DAC analog range be normalized to [0, 1], with
I = 2" digital levels,  being the bit resolution of the converters. Figure 2 shows the static
characteristic of the converters, along with ¢(-) and M(-). The plots consider a scenario
where x can slightly exceed the nominal ADC input range. In the latter plot, the
invariant set (IS) of M(-) is emphasized, as its features will be explored shortly.

Meanwhile, it is important to note that the trajectories within the interval [xy,, xg]
are inherently chaotic. While they remain confined to the interval, stable p-period
cycles (including equilibrium points with p = 1) are not possible. To be a point on a

du = f/\DC(IM) q(xn) = fDAC(dn)
A

> ADC |-1-| pAc AR

\T/
Xn AR Xnt1 ®—1<g «
b

Figure 1.
Autonomous, discrete-time 1D system based on a data converter pair, capable of chaotic behavior.
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Figure 2.

Opgel:’ation of the architecture in Figure 1. For representation clarity, a sample case with only 16 quantization
levels is considered. Loop parameters ave set at a = 8 and b = 0.55. Individual plots: (a) ADC characteristic
function; (b) DAC chavacteristic function; (c) quantization evror function; and (d) map determining the state
evolution in the closed loop system.

p-period orbit, some & must be an equilibrium point of M?(-). In this case, the root of
the characteristic equation at x is

g=—0 | = (—a). (2)

x=x

However, this value inevitably falls outside the unit circle, as |2| > 1, indicating
instability. Additionally, the system exhibits sensitivity to initial conditions. Two
trajectories starting at a closely spaced distance |§¢| after # steps become separated by
|6,|, which grows exponentially as e””, where 1 = In|a| > 0 represents the Lyapunov
exponent. To exemplify this sensitivity, Figure 3 shows two trajectories originating
from almost overlapping values.

To gain a deeper understanding of the IS, it is important to observe that its
endpoints are mutually defined as

x, = min M(x) and xgp= max M(x) 3)
x € [xp,xz] X € [x1,, xg]

and that among intervals [x,xg] satisfying these criteria, the goal is to find the
smallest one preventing the system state from escaping. Let A = 1/(I — 1) represent
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Figure 3.
Sample trajectories starting from nearby points, obtained from the architecture depicted in Figure 1 matching the
configuration presented in Figure 2.

the quantization step, and note that all branches of ¢(-) span at least [-A/2, A/2].
Given |a| > 1, it follows thatx;, < — [a|A/2 + b and xg > |a|A/2 + b. Two cases must be
considered.

Fora < 0, the branches of M(-) have a positive slope, which implies that the only
possibilty for x;, to be strictly less than —|a|A/2 + b is if x;, = M (x1), where M (-) is
the left-most branch of M(-). However, this scenario must be excluded as it would
place an unstable equilibrium point at the boundary of the IS. This, in turn, would
allow minor perturbations to trigger an escape from the IS. Hence, it must be
M (x1) > xy. Similar reasoning leads to the conclusion that xz cannot be strictly larger
than |a|A/2 + b and that it must be Mz(Xg) <X with Mg(-) representing the right-
most branch of M(-). Altogether,

—|a|é+b> _4
{xL <Mpe) _ 2 2 @)

x> Mg (xg) a2 fp<142

2 2

and
A
XL = —|a|z+b

(5)

A .
XR = |ﬂ|5+b

The inequalities can be rewritten as

1lal—1
2 1-1

la| — 1

1- -1

(6)

A
2

N =

= (lal-1)5 <b <1~ (a-1)

Moreover, by subtracting one of the inequalities in (4) from the other, one gets
|a]A <1+ A, that is

1
|a|<1+K=l, 7)

this bound being reachable for b = 1/2.

For a > 0, the scenario is slightly more complex, due to the negative slope of the
branches of M(-). For x1, to be < —aA/2 + b, one needs x, = Mg(xg), with
xgr>1+ A/2. Should x1, be also < — A/2, then xg would be My (x1) >aA/2 + b.
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However, this would lead to x;, = Mg(Mp (x1)), that is unacceptable, as it would place
an unstable period-2 orbit at the boundary of the IS. This, in turn, would allow minor
perturbations to trigger an escape from the IS. Consequently, getting both x;, < —
aA/2 + b and xg >aA /2 + b simultaneously is not possible. If xg = aA/2 + b, as long
as xg <14 A/2, one gets x;, = —|a|A/2 + b; otherwise, x, = Mg(xg). Additionally, it
must be Mg(xg) > — A/2 to avoid also having xg = M (x1). By similar reasoning if
x1, = —alA/2+b, aslong as x; > — A/2, one gets xg = |a|A/2 + b; otherwise,

xgr = My (xr,). Furthermore, one must satisfy My (x;) <1+ A/2 to avoid having

x1, = Mg(xg). Altogether,

_ A A b A

xR<MR1(—§) a=+b<l4-+—
M1 A aA+b> 1+b A
X >M\ S 2 PRI

and

A A
xXp, = min(—a2+b,—a22—ab+a+b)

A A )
xg = max| a—+b,a*——ab+b ).
2 2
The inequalities can be rewritten as
a A a A
- -= 1)<b< ———= 1 10
1 @+l PR G, (10)
that is,
_a  la+1 a la+1 (11)

a1 21-1"“4-1 21-1

Moreover, subtracting one of the two inequalities in (8) from the other, again one
gets the inequality in (7).

While the case with a > 0 seems to be tolerant to a larger parameter range than the
one with a <0, it also leads to more complex relationships. Yet, adopting the stricter
condition (6) in place of (11) simplifies (9) back into (5) also in this condition.

The considerations proposed so far reveal that a determines the size of the IS (the
larger |a|, the larger the set), while b shifts it along the converters’scale. When there is
no attractive IS, in principle, the system should diverge. In practice, components in
the feedback path of Figure 1 may experience saturation, leading to the clipping of
M(-). Trajectories passing through clipping points inevitably result in stable periodic
orbits (for a4 > 0) or equilibrium points (for 4 < 0), as illustrated in Figure 4,
preventing chaotic behavior. Adhering to the guidelines above can assist in configur-
ing @ and b to establish an invariant interval within the clipping range, thereby
avoiding this condition.

Until now, the discussion has assumed ideal behavior from the components in
Figure 1. In reality, there will be unavoidable deviations from it. While these devia-
tions will be the primary focus of Section 4, it is worth anticipating that the model in
Eq. (1) transforms into:
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Stable orbits as a vesult of an incorrect configuration of parameters a and b, given the presence of saturation in the
architecture depicted in Figure 1. In the individual plots: (a) period-2 cycle with a > o and saturation occurring
out of the data converter nominal range; (b) longer cycle with a > o and saturation occurring in the data converter
nominal range; (c) stable equilibrium point with a <o.

Xn+1 = M(x,) + v(n) (12)

where M(-) is a modified version of M(-) influenced by the static errors in the
converters and in the other analog components in Figure 1, while (%) is a noise
term condensing the effects of the ADC input-referred noise vapc(7), the DAC output
referred noise vpac(n), as well as noise in the other analog components. Expectably,
errors and noise effects from the data converters will tend to dominate, both
because these are the most complex components, and due to the fact that they get
amplified by a.

For illustrative purposes, Figure 5a hints at the type of relationship that can be
obtained from x, to x,1, based on artificially synthesized data converter characteris-
tics with a very low resolution, including missing codes, non-monotonicity, and
nonlinearity. Note that, in this scenario, é(-), analogous to ¢(-) in the ideal case,
exhibits a significantly larger image set. As a consequence, the choice of parameters 4
and b must be much more conservative to maintain M(-) within the clipping range.
Specifically, only reduced values of || can be tolerated, particularly when one
deals with data converters with an effective number of bits (ENOB) non-negligibly
smaller than the nominal resolution. On the other hand, v(r#) may end up
partially disrupting the periodicity expected to arise when the clipping limits are
reached.

As a final note, observe that an effective way to restore a more regular behavior
when non-idealities are involved can be to pretend that the ADC and DAC have a
lower bit-resolution # than their real one r. To this aim, one passes only the 7 most
significant bits (MSBs) from the ADC output to the corresponding MSBs in the DAC
input. Figure 5b hints at the behavior that can be achieved by this approach for the
same test conditions as in Figure 5a. Clearly, also this strategy requires a reduction in
|a|, as |a| now needs to be related to =2, Additionally, one should consider that “not
passing” some bits from the ADC to the DAC is a form of truncation that introduces an
offset as large as (2"~ —1)A/2 in e(-) that needs to be compensated acting on b by a
times that amount. On the other hand, this strategy enables the usage of a DAC with
an inherently lower resolution than the ADC, or, alternatively, it lets the DAC least
significant bits (LSBs) be used as a degree of freedom to achieve an effect equivalent
to varying b in steps.
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Sample rvelationship from x, to x,., achieved from the architecture in Figure 1 in presence of ADC/DAC non-
idealities and noise. For illustration, 5-bit data converters are employed with artificially synthesized errors
(nonlinearity, as well as missing values and non-monotonicity in the ADC). In both cases, a = —4. In the
individual plots: (a) all the bits in the ADC output are passed to the DAC, b = o.5. Visually, non-monotonicity
vesults in “stacked” branches (e.g., at x,~0.35) while missing codes cause long branches that appear “more spaced”
than usual (e.g., at x, = 0.45); (b) only i = 3 bits from the ADC ave passed to the DAC, restoring a move regular
behavior. Here, b = 0.5 — 0.19 to compensate for the data truncation.

3. Entropy generation from data converter pairs

TRNGs are systems capable of delivering bit-streams made of independent and
identically distributed (IID) bits from the observation of completely unpredictable
physical phenomena. Because it is not always possible to rely on a physical process
directly capable of delivering IID symbols (e.g., as the toss of an unbiased coin),
TRNGs are typically built as the cascade of multiple subsystems, as sketched in
Figure 6 [25].

In this architecture, the entropy distiller acts as a post-processor block taking the
bits B; of digital samples from an unpredictable process and deriving from them IID
bits B, notwithstanding uneven distributions or correlations on B;. The entropy buffer
lets the distiller operate on multiple B, samples at once, as well as mix data from
multiple entropy sources and deliver a sustained throughput even when the source(s)
operates discontinuously or at a non-constant rate. In this work, we consider a single
source.

From an information theory point of view, the information rate before the distiller
ends up as a bound for the bit rate at its output, given that a perfectly random
binary stream has an entropy rate H of one bit per symbol [26]. Namely, if H; is the
entropy rate at B, and f is its bit rate, the bit rate f, at B, should be less than f H; [27].

Other entropy sources

\Entropy source v 5
' Physical . Saarmler B ® | Entropy | , | Entropy B,
process quantizer buffer distiller 7>

Figure 6.
Avrchitecture of a typical TRNG.
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In practice, the situation is somehow fuzzy. On one hand, one should have f, signifi-
cantly lower than f, to accommodate for less than ideal efficiency in the post-
processing and uncertainty in the knowledge of the uphill H;. On the other hand,
when the randomness of B, is validated by means of statistical test suites [28, 29], the
tests can potentially be passed even when B, delivers little or or no entropy at all. This
is proven by the very existance of PRNG that succeed in the tests. Consequently,
distillers where f; <f H; is not (strictly) respected may appear to deliver “random”

data, and care is evidently required.

In the current discussion, the idea is evidently to use an (analog) chaotic circuit as
the physical process, and in this view, it is important do establish a few points. First of
all, statistical tests suites are not alone an appropriate way of testing TRNGs [28].
Secondly, systems that solely rely on the output of the distiller for testing purposes are
insecure. In fact, the conditioning process might obscure any deficiencies in the data
stream originating from the entropy source. In the worst scenario, one might end up
using a TRNG that has degenerated into a PRNG without realizing it. For this reason, a
secure TRNG should incorporate an interface to inspect the output of its entropy source
(possibly even at a sampling rate or at a resolution better than those used to deliver B;).
As a third point, validation should include entropy estimation at this interface but
possibly other health checks too. Finally, having entropy sources that are inherently
charaterized by both a high bit rate and a high entropy rate is desirable as these
properties simplify the design of the distiller while enabling a high data throughput.

From these points, the appeal of the ADC-DAC-based chaotic systems as an
entropy source should be evident. The presence of the ADC in the loop makes the
physical source capable of sampling and self-quantizing its state at a high resolution,
inherently providing the interface needed for validation and health checks. Further-
more, with reference to entropy estimation and measurements, a chaotic system based
on a 1D map has distinguished advantages, as mathematical tools exist enabling a
computation of the entropy rates to be expected. A complete theoretical discussion is
available in [6, 26, 30]. Here, the key points shall be reviewed, sacrificing some
formality for brevity.

A first, notable concept is represented by the Perron-Frobenius operator (PFO)
Py associated to the map that lets one observe how it transforms probability density
functions (PDFs) [6]. Namely, if the initial state x¢ is drawn in the map IS according
to a PDF p(-), then one can compute the PDF associated to x; as p; = Pu[py]. As long
as x¢ of the system is not known exactly (py(-) has bounded variation), the sequence
{x,} forms a Markov process whose statistics can be studied via the PFO. The operator
is linear and in many practical cases (viz, for mixing maps) admits a unique invariant
density p(-) to which PDF sequences such as (pg, p1, 05, ...) converge at an exponential
rate. The invariant density describes the distribution of points in typical trajectories.

Working with the PFO, one faces two difficulties: the first is that the PFO is
infinitely dimensional and thus not easily manageable; the second is that, in the
proposed application, one is not ultimately interested in the statistics of {x,}, rather in
some discrete version of it from which the bits B, are obtained. Let S, = g(x,), where
g(+) is an output function obtaining discrete symbols S from the system state x. In the
proposed system, g(-) will be naturally derived from f . (%x) as some g (f spc (%n))»
where g(-) is a mapping implementable by purely digital means. Being derived from
{x,}, the sequence {S,} forms a hidden Markov process.

The difficulties above can be overcome by approximating the PFO over a finite
dimensional space. This can be done by partitioning the IS into a finite number of
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non-overlapping intervals (let I; be the generic interval) and observing the coarse
dynamics by which the system state jumps from one interval (viz., discrete state) to
another. By doing so, the PFO gets approximately expressible via a kneading matrix K
whose generic entry k; ; returns the fraction of the interval I; that gets mapped via M(-)
into I;. With this, the probability vector that is invariant under K ends up as an
approximation of p(-).

Interestingly, for a subclass of piece-wise affine maps, called PWAM maps, this
reduction can be practiced with no approximation at all. A piece-wise affine map is
PWAM if a partition can be defined so that: (i) partition points include the map
breakpoints; and (ii) partition points map into partition points. With PWAM maps,
picking an output function g(-) such that each partition interval I; is mapped into an
output symbol S; assures that the sequence {S,} taking values in {So, S1, ... } forms a
Markov process. Expectably, in the corresponding Markov chain, the transition prob-
ability from state S; to state S; is given by the entry k;; of K. Furthermore, in PWAM
maps, the invariant density p(-) is known to be uniform (flat) within each partition
interval. Hence, a perfect derivation of p(-) is possible from the kneading matrix.

Relevant to this work, for ideal ADC and DAC pairs, the architecture in Figure 1
provides PWAM maps as long as 4 is integer and Eq. (5) holds. In this case, the map
gets composed of |4| identical, linear branches within its IS. This statement may
appear in conflict with examples such as that in Figure 2d, where the branches at the
extremes of the IS are different from the others, but becomes clear if you “wrap
around” the invariant interval onto itself so that these “incomplete” branches merge
together into a single one. The partition is then obtained by considering the domains
of the individual branches as partition intervals. Let these be I to Ij;—1 for growing
values of x, with Iy possibly including also the last branch when the extreme branches
are incomplete. An example of the resulting kneading matrix and Markov chain is
illustrated in Figure 7, with reference to the setup illustrated in Figure 2d.

In general, for an integer a, one should ideally get an |a| x |a| kneading matrix
where all the entries are 1/|a|, leading to a Markov chain with |4| states that is fully
connected and where all the transition probabilities are 1/|a|. This chain corresponds
to the toss of a fair |a|-faced dice. Furthermore, the Markov states can be obtained
from the ADC output, since the partition intervals are necessarily aligned with its
quantization thresholds. Finally, when |a| is a power of two, that is, |a| = 2, the
Markov states (viz., the symbols S) can be perfectly encoded in w-bits binary words
that can be serialized into a bitstream. In other words, when all the components obey
to their ideal behavior and |a| = 2¥, the architecture in Figure 1 represents a perfect
entropy source, delivering a bistream B, that is already perfectly random with no need
for post-processing.

Unfortunately, real-world analog hardware is always subject to deviations from
nominal behavior, and one must consider what happens in this case. As shown in
Figure 5, the map will be significantly distorted and perturbed by noise, making it
non-PWAM and characterized by more than |a| branches in its IS. In order to get
insight into this situation, a preliminary consideration is due: when a chaotic map is
employed as an entropy source, the achievable entropy per cycle will be a function of
both the map and the output function (i.e., the way in which the analog state is
transformed in output bits). Specifically, the map is going to set a fundamental limit on
the achievable entropy (from its metric entropy [31]), and the output function will let
it be approached to various degrees. Intuitively, the inherent limit set by the map will
be related to its Lyapunov exponent A that measures the amount of information (about
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Figure 7.

Kneading matrix and Markov chain corresponding to the map in Figure 2d (obtained for a = 8) restricted to its
IS. In the chain, all transition probabilities are 1/8.

the system initial condition) that is lost at every cycle [26]. Even in the non-ideal case,
the map under exam is going to be made of branches with a local slope always close to
the nominal a. Hence, one can expect the entropy rate to be eventually bounded by
log ,([al).

For what concerns the output function, the finer the partition of the IS, that is, the
larger the dictionary of the symbols produced by the output function, the more
information will be preserved in the translation of the continuous state into the output
symbols, leading to a better approximation of the fundamental limit set by the
map. However, this will also result in requiring a large number of bits to encode each
symbol and thus in a poor output entropy per bit at the output, complicating the
design of the distiller. Clearly, the optimal situation in terms of achievable output bit
rate and entropy rate would be a symbol dictionary comprising |a| symbols and having
la] = 2" so that the symbols can be exactly mapped into binary words. The question is
how this output function should be designed. A first critical aspect in this sense is that
even if the domain of the output function should be the IS, in the proposed system,
the latter cannot be known precisely in advance as it depends on the non-idealities in
the ADC, DAC, and other analog components as shown in Section 2.

The results in [26] provide some notable aid in this sense. In fact, such paper
suggests that even when seeking an output function offering a coarse discretization, it
is convenient to base it on a much finer partitioning of the domain, by associating each
output symbol to the union of many small partition intervals, uniformly scattered
across the domain, as illustrated in Figure 8a and b.

This is noteworthy. First of all, if the fine partitioning is fine enough, and poor
alignment with the actual IS will not be very important, thus allowing the quantization
function to be defined for the whole of [0, 1] rather than for the IS, as illustrated in
Figure 8c. Secondly, in the case at hand, g(-) must be based on f ,,-(-) which inher-
ently provides a fine partitioning of [0, 1]. Specifically, when |z| is a power of 2, as
in 2%, g(-) can be implemented by simply extracting the w LSBs from the ADC
output at each cycle, with those bits directly providing a binary encoding of the
discrete state.
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Cogr:zlparison of output functions. In all these example cases, an output function g(-) resulting in an alphabet of four
output symbols (S, to S;) is considered. In (a), g(-) is based on a coarse partitioning of the IS. In (b), it is based on
a finer partitioning. Plot (c) shows that as long as the fine partitioning is fine enough, and g(-) can be defined over
the whole range [0, 1] of the converters and operate robustly even when the actual [xy,, xg) is not known in advance.

4. Built-in self-test of data converter pairs

Established the possibility of obtaining an entropy source by driving an ADC and
DAC pair in self-oscillation, it is time to consider how this configuration can help
evaluating the performance of the data converters.

In the architecture in Figure 1, the possibility to observe the system state x via its
coarse (digital) version d is inherent. The analysis shall thus be carried out by analyzing
sequences {d, } to appreciate deviations of the converters from their nominal operation.
To contain data management costs, tools that can operate on d,, values without memo-
rizing large sequences are desirable. Under this premise, the estimation of the probability
distribution P(d) of {d,} via histogram methods represents a first, obvious choice.

From P(d), missing codes are immediately recognizable. Furthermore, P(d) can
hint at the span of the effective IS obtained in oscillation which in turn is related to the
excess range in the image set of the error function. Refer to Section 2 for the notation
and let [x1,xR] be the effective IS. Also, let é7 and ép be the bounds of é(x) for
X € [X1.,%g], when the bounds of ¢(x) in the same domain should evidently be —A/2,
A/2. Clearly, x1, — X, and Xg — xg owe to ér — A/2 and ég + A/2 via a. The relationship
is straightforward when a < 0, and the branches of M(-) take a positive slope. In this
case, x;, — X ~|aleg + A/2 and kg — xg=|alér — A/2. Established this point, consider
that X1, and Xz can be known (with some approximation) from d; and dg, the latter
two being the extremes of the support of the estimated P(d). Consequently approxi-
mate values of ég + A/2 and ér — A/2 are derivable. These values are in close rela-
tionship to the positive and negative peaks of the difference between the ideal and
effective characteristics of the ADC + DAC chain in [¥1, Xz| plus some noise amplitude
(in fact they also incorporate the errors and noise of the other analog elements in the
loop). Similar considerations clearly be made also in the case where DAC is used
whose resolution is smaller than that of the ADC, as proposed at the end of Section 2.

As an example, and for mere representation purpose, Figure 9a and d show histo-
grams obtained from the ADC output sequence {d, } corresponding to the maps in
Figure 5a and b. In the plots, the very large artificially synthesized errors and the
extremely low converter resolution make the missing codes and the enlargement in
the IS from the expected one stand out to the human eye, but the approach is clearly
applicable at any resolution.

Additionally, one can look at sequences made of the (d,,d,1) pairs rather than d,
alone. In this case, two-dimensional (2D) histograms with estimations of P(x,1,d,)
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Histograms from {d,} (data sequence from the ADC output in oscillation).

(or P(dy+1|d, = d) for all scanned d values) would immediately reflect the shape of
M(-) and &(-), as illustrated in Figure 9¢ and d that again correspond to the maps in
Figure 5a and b. To some extent, this enables an estimation of the overall converter
pair error at specific codes. In fact, what is observed at some abscissa 4 in the 2D
histograms is the consequence of a times the ADC + DAC overall error in the neigh-
borhood of the analog value corresponding to that code, plus the ADC error atd, 1. As
long as |a| is sufficiently large, the first component can be expected to dominate.

Note that because the collection of full two-dimensional histograms can be expen-
sive, one can just track of the extremes of the support of P(d,1|d, = d) for alld
values, rather than building the full histograms.

To summarize, by looking at the loop digital output one can see if the ADC + DAC
chain error gets too large either on the span of the effective IS of the system (with a 1D
histogram) or in the neighborhood of some code (with a 2D histogram).

The main limitations of the proposed technique are obviously twofold:

1.the converters end up being tested limited to the IS of M(-) rather than in their
full range; and

2.the collected data provide information, where the ADC and DAC errors get
“mixed” in a complicated and hard to untangle way.

With respect to the first point, it is clear that the strategy described at the end of
Section 2, based on the usage of just a few of the MSBs of the DAC to close the loop,
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can be helpful since it regularizes the shape of M(-) so enabling a better control of the
actual IS. In addition to that, rather than trying to make the IS as large as possible, it
may be convenient to operate at a reduced value of |a| that lets the IS be smaller and
then shift the IS across the converters’ range by varying b (to some extent an equiva-
lent effect can be obtained by digitally offsetting the output of the ADC before passing
it to the DAC). Clearly, being able to digitally control both a and b (e.g., by having a
provided by a programmable gain amplifier and b by a programmable reference)
would get the best flexibility, while coming at the cost of a complication in the
architecture.

For what concerns the second point, expectably it makes a punctual evaluation of
the data converter errors difficult. However, it does not rule out the existence of a
monotonic relationship, where larger errors correspond to larger histogram excess
spans. In turn, this can enable an empiric determination of a threshold on the histo-
gram excess spans above which the ADC + DAC chain can be considered suspicious.
Additionally, adopting the strategy described at the end of Section 2 and using 2D
histograms can hint at the specific sub-range of the data converter, where the thresh-
old is exceeded.

An open problem is clearly to make the best possible usage of the information
provided by the {d,} sequences during oscillation, going beyond a mere “good
enough”/“not good enough” thresholding mechanism. We conjecture that diversity
might be exploitable in this sense in conjunction with 2D histograms. Namely, being
able to rely on multiple test runs having multiple converters to mix and match or
adopting different b values could provide sufficient data to better localize and quan-
tify errors in the data converter characteristics. In other words, multiple measures
taken in different conditions may allow decoupling the error sources that contribute
to the histogram excess spans.

As a final consideration, it is worth noticing that even without histogram methods,
the mere testing of the entropy source described in the previous section evidently
happens to be a proxy for validating the data converters (because a high entropy per
symbol can only be obtained if the chaotic map is close to the ideal one, which in turn
is a condition satisfied only if the data converters behave accurately).

5. Experimental results from a microcontroller-based prototype

For the validation of the approach, data collected from a prototype system based
on a low-cost PIC microcontroller has been used. The prototype system uses the
microcontroller ADC as part of the loop. In principle, it could have been possible to
also take advantage of the on-board DAC or even to use a SOC with programmable
analog primitives to further increase the overall level of integration of the prototype.
However, in prototyping, preference was given to close the loop with external com-
ponents, in order to enable a direct observation of the analog state via bench instru-
mentation to simplify debugging. Overall, the prototype follows the setup in [22].

The overall architecture of the prototype is shown in Figure 10. The microcon-
troller incorporates a 10-bit ADC paired to an external 10-bit DAC. Communication
between the microcontroller and the DAC is achieved via the microcontroller serial
peripheral interface bus. A linear combiner implemented by means of an operational
amplifier circuit provides the gain 4 and the offset b. In the prototype, both are fixed
in the sense that they are determined by resistor ratios, so that their variation requires
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Figure 10.
Architecture of the test system.

changing the resistors. Specifically, b is obtained by scaling a reference voltage, where
the scale is indicated as k, in the diagram. The analog register is implemented by the
cascade of two track-and-hold blocks operating in phase opposition, the phases being
generated by the microcontroller itself.

Data collection has been practiced running the system in a configuration in which
only a portion of the ADC digital output gets transmitted to the DAC. In fact, the
strategy illustrated at the end of Section 2 has been adopted to enable a more accurate
control or the IS. Specifically, the lower seven bits of the ADC output have been
masked to zero before passing the ADC output to the DAC input. Gain a has then
been set to —4, with offset b at 0.18. The system has been operated at cycle rates up to
some tens kilocycles/s. This limit has been adopted both to avoid introducing errors
due to the settling of the analog register and to simplify the transmission of the
experimental data to a personal computer via the microcontroller USB port for subse-
quent analysis.

Before commenting the experimental data, it is worth underlining that even if the
latter is obtained from the actual operation of a prototype circuit, only a single
instance has been tested, with a single tuning of the system parameters. Furthermore,
the nature of the prototype made it impossible to simulate or inject faults in the data
converters. As a consequence, the results in the following cannot comprise compara-
tive analyses, but shall be interpreted as an illustration of the information that can be
gathered from a real system.

5.1 Operation as an entropy source

Following Section 3, having |a| = 4 would, in ideal conditions, enable the extrac-
tion from the system of one random symbol S per cycle defined on a four-valued
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alphabet {So, S1, S2, S3} and thus suitable for perfect encoding in two bits. In other
words, in ideal conditions, the test system should be able to deliver log,4 = 2 random
bits per cycle.

For building the output symbols, an output function g(-) has thus been defined
operating on the ADC output data, which can be done by merely selecting the two
LSBs at each cycle. This is in agreement with the considerations at the end of
Section 3. Even if better performing output functions can in some cases be
obtained [22], this is also the simplest and most obvious choice. Clearly, in any real
case, the extracted symbols will not be perfectly random. This is to be expected and
consistent with the goal to obtain an entropy source and not a TRNG in its own.
Consequently, in the following, the validation of the output data has not been
based on randomness tests, rather on quantitative entropy estimations and on
distribution plots.

Figure 11a shows the distribution of the two-bit symbols produced by the system
at each cycle. This is a visual indication of balance (or lack thereof) in the output data.
Evidently, although modest, some unbalance is present. To get an ideal of correlations,
whole output sub-sequences need to be examined. To this aim, it is convenient to
preliminary pack the output bits B, in binary words W. For instance, if the words W
are bytes, in the test system, four cycles will be used to generate a word, and the
analysis of two consecutive words W; and W1 will be equivalent to consider eight-
cycle sub-sequences. Figure 11b shows an histogram estimation of the probability of
extracting any two consecutive bytes, namely, P(Wj,11, W},). Ideally, this diagram
should be perfectly uniform. In practice, a texture is evident. The fact that the texture
is orthogonal to the axes and stays the same when observed from both axes is a visual
indication that the probability of W1 is not significantly conditioned by Wj. In
other words, this plot confirms unbalance, but does not show visible correlations. This
is in agreement to the general knowledge that in chaotic systems correlations are
quickly (exponentially) vanishing [6].

From a quantitative point of view, entropy estimators applied on the system
output bits B; revealed entropy rates always in excess of 0.96 entropy bits per output
bit, which is a perfectly acceptable (and in fact quite favorable) value for the subse-
quent entropy distillation. This value has been obtained by processing data obtained
by running the prototype for some million cycles.
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Figure 11.

Visual analysis of the quality of the output bitstreams produced by the test system. In (a), the distribution of the
output symbols can be observed (each symbol is encoded on two bits in the output bistreams). In (b), the 2D
distribution of consecutive output bytes is observed.
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5.2 Operation for OBT

To appreciate data converter errors from the oscillating system, one can build and
observe 1D and 2D histograms such as those in Section 4. The plots in Figure 12 are
obtained from the experimental data collected at the ADC output on 32 x 10° cycles. In
particular, Figure 12a shows the estimated probability distribution of 4 and compares it
with similar data estimated from the simulation of an ideal system on the same number
of cycles. The fuzziness on the top of both plots is an artifact of the estimation, due to the
finite length of the adopted sequence and the large number of bins. It should not be of
concern (indeed, also the plot based on the synthetic ideal data looks the same in this
respect). What is to be observed is the extra span of the experimental plot in comparison
with the ideal one. This is approximately as large as 30 code points. Thererore, it
indicates a peak deviation of the full (ADC + DAC) characteristics from the ideal one as
large as 30/|a| — 1/2~7 quantization steps in dynamic conditions (including noise and the
errors of the other elements in the signal processing chain). This corresponds to errors
involving the lower log,7~2 — 3 bits of the data converters. This number seems rea-
sonable for a setup incorporating an ADC integrated inside a microcontroller. In fact,
microcontroller data converters often have ENOBs significantly lower than the tabled
resolution. Furthermore, one should not forget that errors in the components used to
close the loop and caused by dynamic behavior are also incorporated in this figure.

Figure 12b provides a 2D histogram in the same lines of the illustrative one in
Figure 9d. Again the experimental data are overlapped to data from an ideal system.
The quality by which the data converters quantization error plot is reconstructed is
surprisingly remarkably good. It and lets one appreciate how errors occur around
specific code-points. For instance, the real converter-pair characteristics tend to be
evidently above the nominal one around code 430 and evidently below it at codes
above 650. This information is to be taken with some care because the visible devia-
tions at some d,, are actually due to errors on the whole loop (including not just the
data converters but also other elements). Furthermore, as noted in Section 4, ADC
errors are accounted twice, both at code d,, (scaled by |a|) and at code d,,1 since the
system state x is observed through the ADC reading. Indeed, this mixing of different
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Figure 12.

Visual analysis of data from the ADC output in oscillation, for the purpose of evaluating the correct operation of
the data converters. In (a), the distribution of the data points at the ADC output (in blue), compared with
equivalent data for a synthetic chain using ideal data converters (in ovange). In (b), a 2D histogram permitting
reconstruction of the actual quantization error characteristics. Also in this case the veal data (blue-black) is
overlapped to the ideal one (orange).
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error sources is the main limit of the method. A second limit is that only a portion of
the data converter range can be tested at once: for instance in the test case, only codes
from 160 to 720 get tested. Changing the b value would let the tested range be moved
around across the whole converter scale.

6. Conclusions

The possibility of bringing a data converter pair into chaotic self-oscillation has
been discussed both by the setup of a theoretical framework and via experimental
tests on a prototype system, with the aim of showing the suitability of this setup both
for entropy generation (in view of true random number generation) and for the built-
in self-test of the data converters themselves in an OBT arrangement.

The usage of this setup for entropy generation appears reliable and mature enough
for practical applications. Furthermore, utilization for data converter testing shows
promise, and the techniques described in the paper for examining the collected data
appear meaningful when applied on experimental data. Some open problem remains,
though. One is in the very validation of the approach that would require simulation
setups or prototype systems where errors can be injected to assess the actual ability of
the approach to fully reveal them. Another open problem lays in the interpretation of
the data that can be collected during oscillation. While these data definitely reveal
misbehavior, errors from different origins can get mixed up to the point that
decoupling them can be extremely hard. One can expect that exploiting diversity by
working on multiple data sets (e.g., mixing and matching different ADCs and DAC or
working with different parameters in the loop used to establish the oscillating behav-
ior) may help better isolating the individual error sources and quantifying their
magnitude. This will be one of the first objectives of future research.
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Chapter 5

Perspective Chapter: Behavioral

Analysis of Nonlinear Systems and
the Effect of Noise on These
Systems

E. Setoudeh and M.M. Dezhdar

Abstract

One of the crucial concepts in determining the structure of dynamic systems is to
recognize the behavior of nonlinear systems, which is one of the current issues in
engineering sciences. In general, nonlinear systems exhibit behaviors such as stability,
periodic, quasi-periodic and chaotic. Since in nonlinear systems, changing parameters
can have a great effect on changing the behavior of nonlinear systems, for this reason,
it has been studied how different parameters affect the behavior of a system. Due to
the importance of determining the behavior of nonlinear systems, in this chapter,
first, various criteria for estimating the behavior of nonlinear systems are discussed
and then the effect of these parameters on these systems is examined.

Keywords: nonlinear system, behavioral analysis, stability, chaos, periodic, noise

1. Introduction

For researchers in engineering sciences, investigating and determining the quali-
tative results of dynamic systems is of particular importance, which is often studied
and examined using theoretical theories, differential equations, and other tools. One
of the key concepts in analyzing dynamic systems is identifying the behavior of
nonlinear systems, which is among the current topics in engineering sciences. For this
purpose, many researchers in engineering sciences are interested in studying how
different parameters affect the behavior of a system.

Nonlinear dynamics and complex systems are a very broad subject that essentially
falls into an interdisciplinary research field. This issue includes mathematics, physics,
chemistry, medicine, engineering sciences, and so on. Complex systems are composed
of numerous components, each of which may interact with one another and even
external factors, resulting in diverse interactions. For example, water and air, human
organs, living organisms, infrastructure such as electrical grids, complex software,
electronic systems, ecological systems, cellular systems, and ultimately all kinds of
networks can be considered complex systems, each with their own components and
external interactions. Modeling the behavior of complex systems is challenging due to
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Behavioral Nonlinear Systems

l i ‘, l
Y
Semi-periodic Periodic Chaos Stability
|

Figure 1.
Behavioral nonlinear systems.

their interdependence and interactions among components or between a specific
system and its environment. Complex systems possess distinctive features such as
nonlinearity, self-organization, feedback, robustness, adaptability, Emergence, and
network-like structures that result from diverse interactions among their components.
In the past, researchers discovered that the relationship between nonlinear dynamics
and complex systems in engineering sciences is such that simple systems (with a few
variables) exhibit stable behavior, while complex systems (with many variables)
exhibit unstable behavior. However, it has recently been found that even a simple
nonlinear system can exhibit irregular behavior [1-4]. This means that a system
displaying irregular behavior is considered a complex system, but it is possible for a
simple nonlinear system to exhibit irregular behavior. In general, nonlinear systems
exhibit behaviors such as stability, periodic, semi-periodic, and chaotic, which are
detailed in this section (refer to Figure 1) [1-4].

The distinction between the behaviors of linear and nonlinear systems is about
their stability. The behavior of non-switching linear systems is not sensitive to initial
conditions, while in some cases of nonlinear systems, the equilibrium point of the
system may be stable. However, for some initial conditions, the system response may
be converged (stable), while for others, it may be divergent (unstable), and identify-
ing these types of systems is not an easy task [2-6]. One type of nonlinear systems
behavior is chaos [3], which is unpredictable and represents order within disorder
[1, 2]. Chaotic systems, although they appear random, belong to the category of
deterministic systems, which are distinct from stochastic systems that are random by
nature. In chaotic systems, a small change in initial conditions can lead to significant
changes in the output [2-7], which is a characteristic feature of chaos. Another
behavior of nonlinear systems is periodic. In general, this behavior occurs in dynamic
nonlinear systems around a fixed point with a specific amplitude and frequency [6-9].
Another behavior of nonlinear systems is semi-periodic, which is formed from the
combination of several periodic behaviors [9-14].

2. Detecting chaos in the time domain

One of the common methods for detecting chaos is to use the patterns present in
the time series [15]. One of the simplest methods in the time domain is to plot the time
series in phase space and then observe the created pattern to determine the signal
behavior. Detecting periodic behavior in phase space is very simple, but the behavior
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of chaotic and quasi-periodic systems in phase space is very complex and
unpredictable. This method alone is not a precise way to detect the presence of chaos,
as random systems and real dynamic systems mixed with noise also exhibit similar
behavior in phase space.

Lyapunov exponents of a system are a set of non-changing geometric measures
that directly express the system’s dynamics. One of its applications is in detecting the
phenomenon of chaos in a system and also as a measure of the chaotic nature of
behavior. The topic of chaotic behavior is qualitative as far as it relates to sensitivity to
initial conditions and structural instability. However, in studying a system, we have
information about its behavior in the form of a differential equation, a recursive
mapping, or a time series, and therefore it is necessary to have analytical or quantita-
tive methods for detecting chaos in any system so that we can distinguish chaotic
behavior from random noise-like behavior. Additionally, this method should be able
to provide both a measure and a quantity for the degree of chaos in the system.
Describing the quantitative sensitivity of a system’s behavior to initial conditions in
chaotic situations is possible by introducing Lyapunov exponents [5].

Lyapunov exponents are a set of non-changing geometric measures that directly
express the dynamics of systems. The Lyapunov exponent is calculated as follows:

Consider two neighboring points in phase space at times zero and t, where the
distance between the points in the direction of (i) is ||6x;(0)| and ||x;(z)||, respec-
tively. The Lyapunov exponent is defined as follows:

6Ol ey (1 s
lox0) € ﬂ“3ir5‘o<t1“ ||5xi<o>||) @

In this equation, ; represents the Lyapunov exponent. As can be seen, two points
with infinitesimally small proximity in the initial state, diverge significantly from each
other in the direction of the (i). This phenomenon is referred to as “sensitivity to
initial conditions.”

a. If the 4; < 0, then we will have a stable fixed point or a stable periodic cycle. In
other words, all selected initial points will converge toward a fixed point or a
periodic cycle. These systems are called asymptotically stable. With a negative
increase, 4; — —oo, the stability of the system increases, such that for 4; = —co,
there exists a super-stable fixed point or periodic cycle.

b. If 2; = 0, the system only oscillates around a fixed point. In this case, every
selected initial point oscillates around a stable limit cycle.

c. If ; <0, there are no stable fixed points or limit cycles; in fact, the points are
unstable, but the system is bounded and chaotic. In other words, if the largest
Lyapunov exponent in the system is positive, the system is chaotic; otherwise, it
is not chaotic [7, 11, 16, 17].

Chaotic systems have unique properties that distinguish them from other dynam-
ics. One of the distinctive features of chaotic systems is their strong dependence on
initial conditions. One powerful tool for detecting chaos is the Lyapunov exponent.

A variety of methods have been presented for calculating the Lyapunov exponent,
one of which is the calculation of the Lyapunov exponent using time series [7].
However, Lyapunov exponent is highly sensitive to noise, which is why using
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Lyapunov exponent as a criterion for detecting chaos in noisy environments is not a
good measure [7-9]. As seen, chaotic dynamics create complex attractors that are
limited to a part of space and cannot cover the entire space. Various methods have
been proposed to calculate the dimensions of chaos and hidden dynamics, including
correlation dimensions and fractal dimensions. One of the disadvantages of these
methods is their computational complexity and their dependence on noise. Another
method is to use R/S analysis and the Hurst exponent [18]. This method is used to
distinguish between random time series and non-random and chaotic time series. The
disadvantages of this method include computational complexity and the inability to
detect chaos in noisy environments. Another method for analyzing chaotic signals is to
use the Kolmogorov-Sinai entropy. This law talks about the disorder in a system. A
random signal has the most disorder, but a deterministic system has the most order.
This entropy is related to the Lyapunov expressions of the signal. This entropy is the
average of the positive Lyapunov exponents of the system. One of the limitations of
this method is its high sensitivity to noise [19].

3. Detection of nonlinear systems behavior

Many issues in various fields, including electrical engineering, are inherently
nonlinear and are modeled using partial and ordinary differential equations. Only a
limited number of these equations have exact solutions, and most of these problems
do not provide precise answers, necessitating the use of novel methods for their
analysis. Based on the observed time series of a process, detecting the presence of
nonlinearity is quite challenging. Therefore, efforts have been made to provide tools
for identifying the behavior of nonlinear systems. The behavior of nonlinear systems
in phase space is highly intricate. A simple approach to understanding this behavior is
to plot the time series in phase space and analyze the patterns created. In this section,
various criteria for analyzing the behavior of nonlinear systems are introduced.

3.1 Calculation of the Lyapunov exponent based on the analytical method of
differential transformation and behavioral analysis of nonlinear systems with
respect to unknown parameters

In order to analyze the behavior of nonlinear dynamic systems, a method for
calculating the Lyapunov exponent based on various analytical differential transfor-
mation methods has been proposed. In this process, using the differential transfor-
mation method, the time series of the desired system is calculated and replaced in
relation to the Lyapunov exponent, and then the behavior of the system is determined
using the calculated Lyapunov exponents. In this section, the Lyapunov exponent
method based on three representative limit cycle algorithms has been proposed, with
the aim of clarifying them further. Since the behavior of nonlinear dynamic systems
depends on the changes in their parameters, for example, in a Colpitts oscillator, the
behavior of the oscillator depends on the changes in parameters such as Inductor and
capacitor value, therefore, to ensure that a nonlinear system has the desired behavior,
the most effective approach is to accurately adjust the parameters, if possible. Conse-
quently, the analysis of the behavior of nonlinear dynamic systems with respect to
changes in various parameters of the systems has been studied using the Lyapunov
exponent method based on the differential transformation method.
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3.1.1 Calculation of the Lyapunov exponent based on the classical analytical differential
transformation method

The aim of this section is to determine the different behaviors of nonlinear dynamic
systems using the Lyapunov exponent method based on time series. Accordingly, changes
in the Lyapunov exponent for unknown parameters have also been investigated. This
process, using the classical differential transformation method and the Lyapunov expo-
nent method based on time series, is described in the context of method-1.

Method-1: Let us assume that the time series {x;(¢),x2(¢), ..., x,(¢)}, is the solution
of the main Eq. (1), and the following expression,

1

xi(r+7T)—xj(s+T)

xi(r) — x;(s)

, J=12,..,N. 2)

J; represents the Lyapunov exponent of the system under consideration, in which
T, the time of evolution, and r and s are two selected nearby sample points on the
path. In this case, by applying the differential transformation method, the Lyapunov
exponent of the system in the time series space will be as follows.

1, 009+ SLX®)|0+ T - 64 1)
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Proof: Clearly, by substituting the point “N” from the time series into the differ-
ential transformation method (x(N) = ";_oX;(k)N¥) for the definition of the
corresponding Lyapunov coefficient, the desired relationship is obtained.

In continuation, with the help of presenting the algorithmic steps, we describe the
use of method-1.

Algorithm 1: Calculation of the Lyapunov Exponent Based on the Classical Differ-
ential Transformation Method.

First step: Applying the differential transformation method to the system state
equations (calculating the recursive relationships).

k .
ld;;,ft)] ., j=1,2,..,N. (4)

1
X(k) =3

Second step: Calculating the limited time series using the differential transforma-
tion method.

Xi(k)(t—t0)*,  j=1,2,..,N. 5)

M=

Xj (l’) =
k=0

Third step: Calculating the Lyapunov exponent based on the differential transfor-
mation method using method-1.

1) 09+ X E| 0+ T 64 7
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i=1,2,..,N (6)
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Fourth step: Analysis of the changes in Lyapunov exponents with respect to
unknown parameters and identification of different system behaviors [20-22].

3.2 Identification of behavior based on analysis in the frequency domain

One method for detecting chaotic behavior from periodic behavior involves using
frequency domain analysis. This process entails plotting the frequency spectrum of a
time series, revealing features that may not be easily observed in the time domain. In
periodic signals, energy concentrates at specific frequencies, while chaotic behaviors
exhibit a frequency spectrum with non-zero values across various frequencies, creat-
ing a wide band. In deterministic systems, a wide band spectrum can signal the onset
of chaos. However, it’s essential to note that relying solely on frequency analysis is not
always accurate for determining the presence of chaos. For instance, power spectrum
characteristics are also employed in frequency domain analysis. Additionally, it’s
worth mentioning that the frequency spectrum of a random time series or a time
series from real dynamic systems affected by noise will also exhibit a wide band,
making it challenging to distinguish between these scenarios based solely on the
frequency spectrum [23].

3.3 Nonlinear system behavior detection based on time-frequency analysis

As mentioned, the methods for detecting chaos in the time and frequency domains
are not robust against noise. Another method used for chaos detection is time-
frequency analysis. One of these methods is based on the short-time Fourier trans-
form. The main idea of the short-time Fourier transform is to multiply the input
signal x(t) by a window function w(z), which changes its location with time. In
other words, the signal is divided into short-time segments, and the Fourier
transform is applied to each segment. In this way, each frequency spectrum shows the
frequency content in a short-time period. Such a spectrum includes the change of
frequency content with time. The short-time Fourier transform is defined as fol-
lows [24, 25]:

STFT(t,f) = J x(t + (el 2F s @)

where x(¢) is the input signal, w(z) is the window function with the width of the T,
and X(t,) is the complex-valued spectrum.

(8)

Short-time Fourier transform determines which frequency components and at
what times are present in the signal. The algorithm for detecting chaos based on short-
time Fourier transform is as follows:

1. Calculate the short-time Fourier transform

2.Estimate the dominant spectral components frequency
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The frequency at which the short-time Fourier transform frequency of the
signal is maximized is calculated according to the following equation:

fon(t) = argmaxSTFT(t, f) 9)
where, f represents the frequency and t the time.

3.We define the uq(z,f) as follows:

1 STET(t,f) > 0.01max +|STFT(t, f
ug(t,ﬁ:{ . f) i 1)l (10)
0 elsewhere,
4.In order to detect chaos, we define the following function:
fu®
m(t) = uo(t,f)df (11)
0
5.To detect chaos, we operate as follows:
1 for m(t) >c(t)
a(t) = 12
® {0 for m(t) <c(t) (12)

If d(t) = 1, it indicates a chaotic signal and if d(¢) = 0, it indicates a periodic signal.
In this case, c(t) is the threshold value that depends on the selected window width.
This method is resistant to noise and is used to detect chaos in a noisy environment.
One of the drawbacks of this method is its strong dependence on the selected window
width. On the other hand, this method cannot detect random signals such as noise.
Another new method that has been recently used is the use of energy distribution
based on continuous wavelet transform in chaotic systems [26]. Continuous wavelet
transforms of x(¢) signal is defined as:

W.(a,b) = (x, W) — —— T x(t)W(ﬂ>dt (13)

\/ﬁ a

In which a and b are the scale and shift parameters, respectively and ¥(=2) is the
complex conjugate of the ¥(=2) function.

The concept of shift in the wavelet transform is similar to the concept of time shift
in the short-time Fourier transform. The shift represents the amount of window
displacement and contains the time information of the transform. However, unlike
the short-time Fourier transform, the wavelet transform does not have a direct fre-
quency parameter. Instead, it uses a scale parameter that is inversely related to the
frequency. In other word: a = £

A function v is called a wavelet if:
a. It has a nonzero value only in a certain range (small wave).

b. It has a limited frequency range.
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In this case, the energy distribution based on continuous wavelet transform to
detect chaos is used. The algorithm for detecting chaos is as follows:

First, we sample the signal. In this case, we divide the signal into N parts which are
equal. Then, for each part, we apply the continuous wavelet transform and calculate
the wavelet coefficients and the energy of each part from the coefficients of the
continuous wavelet transform according to Parseval’s theorem. In chaotic systems, the
energy distribution changes irregularly. This method is not resistant to noise [26].

4. A recent criterion for distinguishing chaos from noise

In recent years, various nonlinear electronic systems that exhibit chaotic behavior
have been studied. Some behaviors that are hidden in normal conditions due to the
presence of noise are real examples of chaotic behavior of a completely deterministic
nature. One of these systems is oscillators. The output signal of ideal oscillators is a
periodic function in the time domain and especially at high frequencies is usually
sinusoidal. Also, regardless of factors that are usually negligible such as heat and wear,
it can be said that the frequency and amplitude of this signal are always constant. But
anyway, in practical oscillators, these undesirable noise effects cause minor distur-
bances in the frequency, phase, and amplitude of the output signal. On the other hand,
oscillators can show chaotic behavior for some parameters. For this reason, chaos
analysis in oscillators and its separation from noise is of great importance.

Chaotic systems exhibit behavior that resembles random processes, yet they are
non-random. Chaotic series are a subset of nonlinear processes known for their high
complexity and irregular behavior. Although chaotic time series may appear random,
they possess distinct properties that set them apart from truly random series. One key
characteristic of chaotic processes, which differentiates them from random processes,
is their sensitivity to initial conditions. Even a slight error in measuring the initial state
can lead to exponential growth in the Lyapunov exponent in future values of the time
series. In most cases, the frequency spectrum and autocovariance function of chaotic
series resemble white noise. In fact, chaotic processes often share first and second-
moment properties with white noise and colored noise. The frequency spectrum
obtained from a random time series and a time series associated with real dynamic
systems mixed with noise both exhibit a wide band. Therefore, distinguishing
between these cases based solely on the frequency spectrum is not possible. A criterion
for detecting and distinguishing chaos from noise is presented below [27].

Theorem 1: The variance of the autocorrelation coefficient of the energy signal of
chaos is greater than the variance of the autocorrelation coefficient of the energy
signal of noise.

Proof: Consider the following continuous-time system:

x =f(x, ) (14)
In this case, according to Lyapunov exponent, it can be written
llax | =|all I
lox ()| = [lox(0) [l ™= [lox (e[| = [|ox(0)e™[| — dx(e) = ox(0)e™ (1)

where, 1 is the largest Lyapunov exponent and x(z) is the variation of the signal x.
In chaotic systems, as we know, 4>0.
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According to the definition of the norm of the signal and energy, we can write:

] = Ec(t) = Ex(z) = (|&x(0)]je”)’ (16)

On the other hand, the spectrum of color noise power in general can be considered
as follows:

S(@) :]% —X(f) = g — E,(¢) = JX(t)Zdt — E,(¢) = 0.31AIn(t) (17)

To show that E, (¢) <E,(¢), we must show that E, (t) — E,(t) < 0. For this purpose,
the Taylor series of the multivariable function E, (t) — E,(¢) < 0 around the variables
A,t,]|6x(0)]|, 4 is written as follows:

E,(t) — E.(t) = 0.31AIn(z) — ||6x(0)||* — 2||&x(0)[|*A¢ — 4||&(0)]|*2%¢> (18)

As can be seen, for <1 this relation is negative and for t > 1 for A < g6;1(1 (H) we can
conclude: E, () <E,(t)
By multiplying both sides of the above relation by, ¢, we have:
E,(t) <E.(t) — E,(t)e ¥ <E (t)e™ —
(19)

JEn (B < J Bu(t)e™ — Ey(s) <Bu(s)

0 0

According to the definition of autocorrelation coefficient Ry, ;) = L™} (Ex (5)2) , the

above relation can be written as subscript:

Rg, 1) <Rg, () (20)

Using the properties of the probability distribution function:

E,(t) <E«(t) = f, < (21)

X

Where f, is the noise energy distribution function and f, is the chaotic signal
energy distribution function. From the two relations (20) and (21):

JRE n < JRE,fx 7 HRy, S'MREX (22)

Where i, is the mean of the autocorrelation coefficient of chaos and yg, is the

mean of the autocorrelation coefficient of noise signal. From the two relations (20)
and (22) we can conclude:

2 2
R, (t) = iz, <Re(t) = g, — (Re,(6) = s, ) £, < (Ru.(0) — e, ) £ (23)

Therefore, according to the definition of variance, it can be written:
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| (Re.® ~ o) Foe | (Re0) ) Frte = 32, <%, (24)

This means that in a noisy environment, the variance of the autocorrelation coef-
ficient of the energy signal of chaos is greater than the variance of the autocorrelation
coefficient of the energy signal of noise.

Method 1: Compare the variance of the autocorrelation coefficient of the energy
signal of chaos in a noisy environment to the variance of the autocorrelation coeffi-
cient of the energy signal of noise.

Proof: For the chaotic signal x(t) in a noisy environment as y(t) = x(t) + n(t),
according to the variance properties, we can write:

var(x + y) = var(x) + var(y) + 2cov(x, y) (25)

The energy of the chaotic signal in the noise medium is calculated as follows:
E(x(t) +n(t)) = |lx(t) +n@)|| = E(x(t)) + E(n(t)) + ZJx(t)n(t)dt (26)

Where, #(2) is a noise signal.
So:

var(E(x(t) + n(t))) >var(E(n(t))) (27)

In this relation, E( ... ) represents energy.

As seen in Theorem 1 and Method 1, due to the dependence of the chaotic signal on
the nonlinear dynamics of the system, it can be said that chaos has smoother changes
than noise, but due to the random nature of noise, noise follows more severe changes.
For this reason, it can be said that the variance of the energy of the chaotic signal is
greater than the variance of the energy of the noise signal in different frequency sub-
bands. As it is clear, by separating the high-frequency part in the chaotic signal mixed
with noise, the effect of noise on the signal is reduced. Because noise often appears in
high frequencies, by taking the signal information in the frequency domain and
attenuating the high frequencies, which is equivalent to attenuating noise, chaos
detection in a noisy environment can be better followed by examining the variance of
energy in frequency sub-bands.

5. Chaos detection based on autocorrelation coefficient of energy
distribution using static discrete wavelet transform

This method is based on a time-frequency analysis of the signal. By using static
violet transformation, low-frequency components (signal general) and high-
frequency components (signal details) are separated. The static wavelet transform is
the same as the discrete wavelet transform. Figure 2 shows the general structure of
the signal decomposition algorithm into low and high-frequency components using
the discrete wavelet transform.

Stationary wavelet transform is similar to discrete wavelet transform with the
difference that sampling is not used in it (like Figure 3).

86



Perspective Chapter: Behavioral Analysis of Nonlinear Systems and the Effect of Noise...
DOI: http://dx.doi.org/10.5772 /intechopen.1005093

Signal-Frequency range [0...w]

Low Psaa Fifter High Pass Filter

Dawn - Down -,
. sarnpiing | | samplin :
Ty gby2-
P Approx:'maifc;r; Coefficient 1 Detaif Coéfﬁcient i
o= [0 w2 ‘ [/2......w)

! v P Fiiter: Figh Pass il

Approximation Coefficient I-1 ‘

Low Pav'és Filter I

Approximation Coefficient

High Pass Filter

Detaii Coefficient i

Figure 2.
General structure of signal decomposition using discrete wavelet transform.

The algorithm for detecting chaos is used to detect chaos.

1. The high-frequency components of the signal (signal details) are decomposed in
several steps using the static wavelet transform (according to Figure 2).

2.Calculation of energy from detail coefficients (calculation of energy distribution
in different frequency sub-bands) using Parswal’s relation.

m

E(di) =) |dif? (28)

=1

3.Calculation of autocorrelation coefficient of energy distribution in different
frequency sub-bands.

4.The variance of the autocorrelation coefficient of the energy distribution in
different frequency sub-bands of the chaotic signal is more than the variance of
the autocorrelation coefficient of the energy distribution in the frequency sub-
bands of the noise signal.
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Figure 3.
General structure of signal decomposition using static wavelet transform.

For example, the fourth-order chaotic oscillator circuit based on memristor is
shown in Figure 4. In Figures 5 and 6, the autocorrelation coefficient of energy
distribution in different frequency sub-bands of chaos oscillator and the autocorrela-
tion coefficient of energy distribution in frequency sub-bands of Gaussian white noise
are considered.

. Autocorrelation of Energy Disturibution of Chaotic Time Series
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Figure 4.
The circuit schematic of chaotic oscillator based on memristor.

Autocorrelation of Energy Disturibution of Gaussian noise
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Figure 5.
Autocorrelation coefficient of energy distribution in frequency sub-bands of chaos signal.
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Figure 6.
Autocorrelation coefficient of energy distribution in frequency sub-bands of Gaussian white noise signal with mean
1 and vaviance 5.

6. Conclusions

In this chapter, we introduce a method for calculating the Lyapunov exponents
using the differential transformation method to explore how various system parame-
ters influence system behavior. We also propose a new criterion, based on the static
violet transform, to differentiate between noise and chaos. Additionally, a method for
detecting chaos based on energy distribution in various frequency sub-bands is
described. Simulation results demonstrate the effectiveness of these methods in
distinguishing chaos from noise.
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Chapter 6

Exploring the Non-Linear
Relationship between Economic
Growth and Its Main Drivers over
the Last Decade in EU: Evidence
from a Panel Smooth Transition
Regression

Catherine Bruneau, Alice Eraud and Iuliana Matei

Abstract

Rising oil, coal, and natural gas prices linked to the conflict between Russia and
Ukraine have raised concerns about global economic growth and inflationary trends
(International Monetary Fund (IMF), 2023). It is therefore interesting to examine the
possible impact of oil prices on the relationship between economic growth and its
determinants, including inflation. This article addresses this issue, using a panel
dataset of 26 EU countries over the period 2011-2023 and studying the evolution of
their growth within a Panel Smooth Transition Regression (PSTR) framework. Our
empirical findings show that the real oil price is a significant transition variable
between two extreme regimes and, accordingly, reveal that the determinants of eco-
nomic growth have a time-varying intensity; notably, domestic investment, govern-
ment spending, budget deficit, energy consumption of (non)renewable energy, trade
balance, population growth, monetary policy as captured by the term spread and the
M2 money growth, as well as the energy-related inflation.

Keywords: economic growth, oil price, inflation, energy use, monetary policy, PSTR
models, European Union countries

1. Introduction

The escalating conflict between Russia and Ukraine has triggered a surge in oil,
coal, and natural gas prices, prompting concerns about their potential impact on
global economic growth and inflationary trends, as highlighted by the International
Monetary Fund (IMF) in 2023. In response to these heightened uncertainties, there
has been a notable uptick in academic interest surrounding the causes of inflation
trends observed over the past decade and their potential repercussions on economic
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growth. Advanced econometric models such as the Panel Smooth Transition Regres-
sion (PSTR) are employed to provide a nuanced understanding of the multifaceted
relationships at play and their potential non-linear features.

More specifically, this paper explores and provides evidence of the non-linearity of
the relationship between economic growth and its main determinants by identifying
two different regimes linked to changes in the real price of oil within the Eurozone
between 2012 and 2022.

Following Hansen’s [1] approach, incorporating the concept of smooth transitions
between regimes, allowing for a more flexible representation of non-linear relation-
ships, one uses the PSTR model to explore non-linearities in the relationship between
economic growth and its determinants to identify threshold points where the rela-
tionship between these variables changes, providing a more nuanced understanding of
how economic dynamics evolve under different conditions in the particular context
one mentioned.

The paper builds on Ben Cheikh et al. [2] approach investigating the relationship
between energy consumption, income, and environmental pollution, with a focus
on the impact of CO, emissions, using a non-linear regime-switching model to
identify endogenous turning points in the relationship between economic
development and environmental quality. The analysis, applied to Middle East and
North African (MENA) countries, uses a non-linear panel smooth transition regres-
sion (PSTR) model to capture heterogeneity in pollutant emissions. The findings
emphasize the importance of considering non-linear relationships for a nuanced
understanding of environmental sustainability, economic growth, and energy con-
sumption.

Based on these findings, this paper examines the complex relationship between
economic growth and its determinants, including the common factors that explain the
business cycle as well as certain monetary factors, and, more specifically, energy-
related inflation. Noteworthy contributors to this non-linearity include a country’s
level of investment and energy consumption from non-renewable sources.' Special
focus will also be paid on the real oil price as one source of non-linearity.

Our main contribution is to show how a PSTR approach can provide interesting
insights into the complex interplay of economic growth and its determinants by
highlighting the role of real oil prices in this non-linearity.

The results we obtain, while they need to be interpreted with caution due to the
short period studied, could offer policymakers a more nuanced understanding,
enabling them to develop targeted strategies for navigating the complex economic
landscape, particularly in the face of geopolitical conflicts and crises.

The paper is organized as follows. The first part is devoted to a short literature
review, and the second one is devoted to the presentation of the methodology.

The data are described in part 3. The results are commented on in part 4. Part 5
concludes.

2. Related literature review

The inquiry into the impact of inflation on economic growth is a topic of consid-
erable interest and discussion in the academic literature, as evidenced by works such

" The contribution of the renewable energy consumption is found insignificant.
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as Gillman and Kejak [3]. While ongoing debate exists, there is a general consensus
that inflation has a globally adverse effect on medium and long-term growth [4-8].
However, it has been proposed that the connection between economic growth and
inflation is not a straightforward linear relationship; rather, it is influenced by the
level of inflation. Fischer [9] introduces the idea of a threshold above and below which
the growth effects of inflation differ. Specifically, he suggests a positive relationship
between inflation and growth for low inflation levels but a negative or insignificant
one for high levels. Additionally, in cases of negative impact, the marginal growth
costs appear to vary with inflation; the effect is stronger at lower inflation rates than at
higher ones [10-12].

While the non-linear nature of the inflation-growth relationship is widely
acknowledged, controversies persist regarding the inflation level acting as the thresh-
old, the sensitivity of this non-linear relationship to factors such as data frequency,
analytical framework, methodology, country classification (developed/developing),
and the presence of high-inflation observations.

PSTR model has found application in a diverse range of economic modeling
problems. These applications encompass investigations into the connection between
pollution and economic growth [13, 14], the inflation-growth relationship [15-17],
the impact of oil prices on the current account of oil-exporting nations [18, 19],
borrowing costs of European countries during the recent financial crisis [20-22] or
the behavior of exchange rates [23], among others [2, 24, 25]. These diverse studies
highlight the PSTR model’s capability to effectively capture heterogeneity in
panel data.

3. Methodology: A PSTR approach

The multi-regime non-dynamic panel smooth transition regression (PSTR) model
with individual (y;) and possible time (4;) effects are specified as:

Vi = p; + & + B OXie + PV X % (q,37,¢) + i (1)

fori =1, ... N (cross-section dimension) and ¢t = 1, ... T (time dimension).

Y: denotes the dependent variable, y; denotes the individual effect (which does
not depend on time), and 4, denotes the time effect (which does not depend on the
individuals).

X, is the K-dimensional vector of time-varying explanatory variables.

q,, is the transition variable and #;; the error term.

g(qit; 2 c) is the (scalar) transition function normalized to vary between 0 and 1.

In the simplest case, just one transition is supposed to occur between two
extreme regimes (m = 1 transition). In this case, for the first (extreme) regime, the
specification of Y is a linear function of X with parameter #\°). It is observed when
g(qit; y,c) — 0, while, in the second extreme regime, observed when g(qit; ¥ c) —-1,Y
is another linear function of X with parameters O 4 g,

It is worth emphasizing that the regime, at date ¢, is an intermediate one charac-
terized by a linear function of X, with parameters (* + g (g;37>¢) between A %and
B9 + pY. Accordingly, the model has time-varying coefficients.

The transition function is generally specified as a logistic function:
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m -1
g(qus7sc) = (1+ exp <VH(% CJ‘)) )
=1

J

with m denoting the number of transitions.

y is the slope parameter supposed to be strictly positive and ¢ = (c1, ¢, ..., ¢y) With
(c1 <2< ... <Cyp) is the set of the threshold parameters.

With m = 1, the simplest specification of the panel logistic smooth transition
regression (PLSTR) model is obtained with the transition function specified as fol-

lows: ¢(4:57¢1) = Trop ey )

In this case, the LSTR model implies that the two extreme regimes are associated
with low and high values of g (qit; 7, c) with a single monotonic transition of the
coefficients form ) to (© + g as q,, increases, where the change is centered
around ¢;.

When y — +oo, g(qit; 2 c) becomes an indicator function 14, >c (equal tol if
4> ¢1, and O otherwise). In that case, the PSTR model is similar to the two-regime
panel threshold model of Hansen [1].

A generalization of the PSTR model to allow for more than two different regimes is
the additive PSTR model [26]:

r .
Yi=p+ 4+ YKy + # Z/)’W itg(qg>§ }’j)cj) +u; (3)
=

where the transition functions g(qg); 7j> cj) are defined as in (2) with

Cj = ((,’]‘,1,6']‘,2, ;Cj,mj> .

If,Vj =1,..,r,mj = 1and qi@ =¢q,, , the model in (3) becomes a PSTR model with
r 4+ 1 regime. Accordingly, the additive PSTR model can be viewed as a generalization
of the multiple regime panel threshold model as shown by Hansen [1].

When the largest model that can fit the data is a two-regime PSTR model (1)
with » = 1and m = 1, as in the present study, model (3) plays a role in the evaluation
of the estimated model as explained below.

Estimating the /)’(0) , ﬂ(j), 7j> ¢j,j = 1, ...,r parameters in the additive PSTR model is a
relatively straightforward application of the fixed effects estimator and non-linear
least squares (NLS).

Finally, the model is evaluated by using two misspecification tests.

* A test of parameter constancy over time with an alternative specifying that the
parameters change smoothly over time;

* Note: another specification is possible giving the panel exponential smooth transition regression (PESTR)
model with the transition function specified as:

2(gi37,¢) =1— exp (—y]_[]-"il (g: — cj)z) still with y > 0,
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* A test of no remaining non-linearity where the alternative is that the parameters
change smoothly over time.

For both tests, an extension of the PSTR model is proposed in the form (3).>*

In order to investigate the potential non-linear effect exerted by the situation on
the oil market on the relationship between the gross domestic product (GDP) growth
and its usual determinants for the 26 countries of the Eurozone, the panel smooth
transition regression methodology appears to be particularly well adapted. More pre-
cisely, the PSTR analysis of the problem, referring to specification (1), will include the
following variables. For each country i and year ¢, the dependent variable is the GDP
growth rate, GDPG;, and the explanatory variables are as follows:

* Growth rate of the nominal oil price ALnOIL,

* Year-to year inflation rate ALnCPI;;

* Initial GDP, GDP;g

* Domestic investment growth, INVG;,

* Population growth, POPG;;

* Government expenditures growth, GEXPG;

* Non-renewable energy consumption growth, NRECG;,

* Terms of trade growth, TOTG;,

* Budget deficit, BD;;

* Term spread variation, TS;

* M2 money growth, M2G;,

The transition variable is the real oil price, in logarithm, LnROIL,, whose dynamics
can be considered stationary (see Figure 1a of Appendix).

’ The model under the alternative may be called a Time Varying Panel Smooth Transition Regression (TV-
PSTR) model, and it is specified as:

Yie=pi + 4 +ﬁ<0),Xit + Z;Zlﬁ@/ ng(qg); }’j;fj> +(BOK 4 ;zlﬁ(j)/ ftg(qg>; }/j)ci))f(%;yr+1’67+1) +Uit
with a logistic specification for f similar the one of g and with time as transition variable. The null
hypothesis is then Ho: { 7,1 = 0 } since f(%;7,,1,¢r41) = 1/2 when y,.; = 0.

" In the PSTR framework it is a natural idea to consider an additive PSTR model with 7 + 1

transitions as an alternative, that is:

Yie= i+ e+ B0 X +* Z}Illﬁ(’)’Xizg<q§’;); Yj,Cj) + i

The null hypothesis of no remaining heterogeneity can then be formulated as:

Ho: { Yr1=0 }
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As usual, the oil price and the related inflation rate are considered as exogenous
variables, as well as the initial GDP and the population growth given the short period
(only 13 years). In addition, the budget deficit dynamics display sufficient inertia to
be assumed as an exogenous variable. Likewise, the monetary policy as captured by
M2 money growth is expected to have somewhat delayed effects on economic growth.
However, potential endogeneity issues can be expected for the inflation rate, domestic
investment growth, government expenditures growth, terms of trade growth as well
as term spread which are, therefore, introduced with one lag.

Finally, the model which will be estimated becomes:

GDPG; = i; + (p\ ALnOIL, + B ALnCPILiy_1 + B GDPig + p INVG;y 1 + By GEXPGiy 1+
+5Y'POPG;; + ' NRECG;; 1 + By TOTGy-1 + B3 BDiys + f0) TSiy1 + fLY M2Gy,)
(B ALnOIL, + B ALnCPI, 4 + pGDP, ¢ + B INVG,, 1 + B GEXPG;, 4
+BVPOPG;, + +B"NRECG;; 1 + f'TOTG;; 1+ fS"BD;, + A\ TS:; 1
+BM2G; ) (LnOILy; vy, 01) + wiy
(4)

4, Data and variables

Our panel data sample covers the period 2011-2023 and includes the 26 European
Union (EU) countries: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithua-
nia, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, and Sweden. We collect the data at a yearly frequency from Eurostat, European
Central Bank, and World Development Indicators Databases. We aim to tackle the
non-linear contribution of the determinants of economic growth (particularly infla-
tion) depending on the conditions in the oil market; accordingly, we choose the real oil
price (in logarithm) as the transition (threshold) variable. We retain a set of explana-
tory variables inspired by the empirical literature, including Barro [5], Sala-i-Martin
[27], Ozturk [28], Lépez-Villavicencio and Mignon [17], and Eggoh and Khan [24].

Our monetary and financial variables vector comprises the term spread and the
money growth. We compute yearly averages using monthly data on government bond
yields coming from the European Central Bank (ECB). Term spreads are the difference
between each country’s 10-year bond rates and the 3-month Euribor rate. This spread is
commonly used to study yield curves (e.g., [29]). A 10-year-3-month term spread
approaching zero suggests a “flattening” yield curve. In addition, a negative value of the
spread, which is observed for inverted yield curves, is generally considered a sign of
recession. Annual M2 money growth (as a broader measure of the money supply in an
economy) accounts for inflation rate changes and their implications on economic growth.

The data related to the macroeconomic variables comes from Eurostat and refers to
inflation, terms of trade, budget balance (deficit or surplus), and primary energy
consumption. We use the harmonized Consumer Price Index (CPI) to measure infla-
tion. The export-import price index ratio is taken to determine the terms of trade.
Current prices divided by chain-linked quantities using 2015 as the reference year
provided. This variable quantifies the percentage change over 5 years (year Y to year
Y-5) and reflects how much an economy can import per unit of export products and
services, suggesting its trade competitiveness. The government budget balance,
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whether deficit or surplus, is taken as a percentage of GDP and serves as an indicator
of fiscal policy. In addition, the World Development Indicators database provides data
on annual economic growth, energy consumption, domestic investment, government
consumption expenditures, and population growth. We use growth rate of real GDP
per capita (at constant 2015 US prices) as a dependent variable. Among the explana-
tory variables vector, we also consider the initial level of GDP per capita measured by
the natural logarithm of the value of GDP per capita every 5 years. This variable
captures Solow’s [30] convergence process in which countries with a lower initial
capital stock per capita (or production per capita) expand faster. According to the
literature, the coefficient of this variable should be negative. In line with neoclassical
growth theory, our PSTR models contain both population growth and domestic
investments (via the annual growth of gross fixed capital formation). The first vari-
able is expected to negatively impact GDP growth, while increased investment rates
should have a favorable impact on the evolution of economic activity. The govern-
ment spending growth rate (the general government’s final consumption expenditure
growth) is expected to be positively or negatively linked to economic growth. Alesina
et al. [31], for example, show that fiscal corrections relying mostly on spending cuts
that are concentrated on government wages and transfers tend to be expansionary,
whereas those relying mainly on tax increases are contractionary.

In addition to these traditional variables influencing economic growth, we also
consider the non-renewable energy consumption growth (in kg of oil equivalent per
capita). Indeed, fossil fuels account for a large part of the energy mix, at least, 74.2%,
observed in 2023. Recent growth models (e.g., Stern [32], Soytas and Sary [33])
emphasize the role of energy in economic growth, whereas neoclassical growth models
(e.g., Solow [30]) focus solely on exogenous technological changes. These theoretical
findings inspired empirical research (e.g., Kraft and Kraft [34], Ozturk [28], Apergis
and Payne [35]) on causality between these variables to guide environmentally
friendly energy strategies. Energy consumption is expected to stimulate economic
growth, as proposed by the “growth hypothesis” in the related literature. Its validation
means that energy is essential to economic growth; hence, strong energy policies are
needed to boost growth or constrain energy consumption to decelerate growth.

As indicated before, we aim to determine the extent to which fluctuations in oil
energy prices contribute to non-linearities in the relationship between economic growth
and its determinants. To this end, we consider the natural logarithm of the real oil
energy price from the World Bank Commodity Price Data. It refers to the average
annual organization of the petroleum exporting countries (OPEC) crude real oil price:
the crude oil, the average spot price of Brent, Dubai, and West Texas Intermediate,
equally weighed/$ per bbl. This variable, LeROILP;, whose dynamics can be considered
as stationary over the period of study, is the threshold variable in our PSTR models.

As indicated before, for each country 7 and year ¢, the dependent variable is the
GDP growth rate, GDPGj; and the explanatory variables are:

* Growth rate of the nominal oil price ALznOIL,

* Year-to year inflation rate ALnCPI;;

Initial GDP, GDP;q
* Domestic investment growth, InvG;

* Population growth, POPG;
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* Government expenditures growth, GEXPG;

* Non-renewable energy consumption growth, NRECG;;
* Terms of trade growth, TOTG;

* Budget deficit, BD;

* Term spread variation, TS;

* M2 money growth, M2W,,

Table 1 of Appendix shows us the matrix correlation between the explanatory
variables. Since there is no substantial correlation between these variables (except for
the link between initial GDP and population growth), they can be included in the
model simultaneously.

Furthermore, Tables 2 and 3 of the Appendix provide definitions and main
descriptive statistics of variables in our growth regression analysis. Regarding our
variable of interest, Table 3 indicates that the lower real oil price was 41.14 $/barrel
while the highest level corresponds to 95.29 $/barrel. OPEC’s nominal oil price aver-
aged 68.44 $/barrel. In the EU economies, between 2011 and 2022, inflation averaged
2.13% per year, while real GDP growth averaged 2.9%, respectively. In addition,
Figures 2-4 display the trends of inflation, real GDP growth, and real oil prices (see
Appendix) among EU countries. Figure 2 shows the scatter plot for the whole sample
on the link between economic growth and inflation. Globally, there is a positive
relationship between inflation and growth. This relationship seems to break down,
however, midway between 4 and 8% inflation; above that threshold, there is a nega-
tive relationship between these two variables. However, the inverted U-shaped rela-
tionship between inflation and economic growth (observed in EU economies) has
been documented in the recent empirical literature (see, e.g., [17]). The next Figure 5
illustrate these patterns by country.

To avoid spurious results, tests for cross-sectional independence in the errors and
variable stationarity checks were performed. Table 4 in the appendix significantly
rejects the null hypothesis of no cross-sectional dependency at the 1% level of signif-
icance for all variables, indicating reliable interdependencies between the countries.
Considering the cross-dependence results, the Pesaran [2007] CIPS panel unit root
findings show that the most part of our variables are stationary in level (except for the
logarithm of budget deficit and the terms of trade). Some variables, such as oil prices
do not have enough observations (11 in total) to test for stationarity, but, as previously
indicated, the dynamics of the oil price can be considered graphically as stationary.
Considering these findings, we may confidently move forward with the PSTR estima-
tions regarding the relationship between economic growth and its determinants.

5. Results and discussion

Before estimating Eq. (4), we checked for linearity (homogeneity) in the relation-
ship between GDP growth and inflation, conditioned by the oil price transition variable.
Thus, testing whether the model has nonlinearity features is a necessary step before
performing PSTR model estimation.

The results are detailed in Table 5 of the Appendix. For the test of linearity, we
check whether the order m is one or not. We find that null hypothesis of linearity is
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rejected at the 1% significance level meaning that there exists a non-linear relationship
between inflation and growth when the real oil price is considered as a transition
variable. According to the two statistics (LR and LMF statistics), 2 regimes are fund
(i.e., there is evidence on the existence of one threshold in the model). Additionally,
the logistic specification is preferred over the exponential one since the logistic model
had lower LM and LMF p-values.

Table 6 provides real oil price thresholds for the EU-26 countries as a whole.

The real oil price threshold for the EU countries is 4.03. Since our data on real

oil price are in natural logarithm, to compute the corresponding threshold value in
dollar, we applied an exponential function to the constant value (4.03). This transfor-
mation informs us that the threshold for real oil price is 56 $ for the EU-26 countries.

In both regimes, the effect of oil-related inflation has a negative and statistically
significant influence on economic growth at a 5% level of significance. It dominates
the effect of consumption-based inflation whose effect is found non-significant in
both regimes.

As expected, initial GDP has a positive impact on GDP growth, whatever the
regime, but population growth has no significant impact.

Delayed investment growth has a positive and significant impact in the second
regime; not surprisingly, this determinant of GDP growth plays no significant role in
the critical and highly uncertain periods that primarily determine the first regime.
Similarly, the lagged budget deficit has a positive impact on GDP growth in the second
regime but not in the first. The same applies to terms trade’s delayed growth, whose
positive impact is only significant in the second regime.

Interestingly, the growth rate of non-renewable energy appears as a positive
determinant of GDP growth for both regimes, meaning that the “growth hypothesis”
is validated; the non-renewable energy being a key ingredient for the economic
growth in the EU countries.

The growth rate of money supply (M2) should have a positive effect on GDP
growth over the decade 2011-2023, due to the quantitative easing decided by the ECB
to deal with the consequences of the sovereign debt crisis, as well as the Covid crisis.
However, overall, the relationship between M2 and the growth rate is negative during
the studied period.

Of course, the central bank’s balance sheet is clearly related to phases of
sustained growth and structural change, but it above all reflects the only ability
of central banks to react very quickly to critical shocks by implementing
stabilizing measures. Although the two waves of support programs implemented
by the ECB (the public sector purchase programs-PSPP) following the sovereign debt
crisis and pandemic emergency purchase programs (PEPP), following the pandemic,
resulted in a sharp acceleration in the growth of the money supply, they were
implemented in response to major recessions, which have a negative impact on this
relationship over a relatively short and specific period.

The results must therefore be qualified with regard to the link between growth and
money supply, even if this control variable remains significant at the scale of the
regime. Delayed effects on the role of the money supply in stimulating growth may
need to be investigated further over a longer period.

Finally, the lagged term spread has a negative and positive impact respec-
tively in the first and second regimes. However, once again, the role of the
term spread as an early indicator of recessions is difficult to highlight in the
period studied, where we observe only one recession during the period covered by
the study.
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6. Conclusion

The real oil price is found a significant transition variable between two regimes of
relations between growth and macroeconomic variables, distinctively affecting their
intensity. While the oil price maintains a negative relationship with the annual GDP
growth rate, erasing the expected impact of inflation; this relationship is non-linear
and depends on a minimum oil price threshold, affected mainly by supply/demand
imbalances in the oil market through an exogenous geopolitical context.

However, as we have pointed out, the period studied is short, quite heavily
impacted by very critical periods, namely the sovereign debt crisis and the Covid
event. What is more, the annual frequency is too low to really assess the impact of the
financial variables traditionally introduced to explain economic growth. Conse-
quently, these results cannot provide a solid basis for extrapolating what may happen
in the future, by comparing the oil price to a reference value.

All in all, we consider that the results obtained are encouraging to develop a more
in-depth analysis, notably by using a higher frequency database, over a longer period,
distinguishing sub-panels of countries, in order to obtain a finer and more robust
analysis of the non-linear relationship between economic growth and its determi-
nants, as a function of oil market conditions.
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Variable Pesaran CD — Stats Pesaran CIPS — t-Stat (model Pesaran CIPS - t-Stat (model with

(probability) with constant) constant and trend)
GDPG 44.58 (0.000) —2.290" —2.719
InvG 16.592 (0.000) 35147 —2.874
TOTG 22.328 (0.000) —~1.964 —-1.742
INFHC 56.776 (0.000) —-2.300" —2.655
POPG 3.106 (0.0019) —2.416" —2.611
Ln 55.020 (0.000) — —
GDP,,
GEXG 15.603 (0.000) 3356 -3.834"
Ln BD 37.091 (0.000) -1.928 —3.594""
Ln OILP 59.791 (0.000) — —
NECG 32.890 (0.000) —4.090"" —6312"
M2 G 41.361 (0.000) -3.621" -5320""
TS 45.397 (0.000) -3.016" —

Note: (i) > ™ " significant at 1% level, 5% level, and 10% level, respectively; (ii) In BD is weakly stationary as well as

TOTG (around 12%).

Table 4.

Cross-section dependence test (Pesaran — CD) and related panel unit root test (Pesaran CIPS) results: 2012-2022.

Model Hypotheses Test Stat (p-value)
PSTR UE HO : m= 0 vs H1: m=1 LM 101.604"" (0.000)
LMF 124737 (0.000)
HO:m=1vs H1: m=2 LM 18.788 (0.065)
LMF 1.451 (0.152)

Notes: (i) > - significant at 1% level, 5% level and 10% level, respectively; (ii) LM and LMF tests are the Lagrange
Multiplier and Fischer tests for linearity; (iii) HO: linear model; H1: PSTR model; iv) m=1 and m=2 ave the logistic and
the exponential transition functions, respectively; v) - indicates the strongest vejection of the linearity.

Table 5.
LM and LMF tests of linearity (p-values).

Panel models PSTR UE_26
Regime 1 Regime 2
Coef. t-Stat Coef. t-Stat
Transition parameters
Speed of transition - y1 13.9944
Threshold parameter — c1 4.0305 56.28
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Panel models PSTR UE_26
Regime 1 Regime 2

Coef. t-Stat Coef. t-Stat
Expanatory variables
Dlog Nominal Oil price —0.8034 —0.4899 —4.2965 —0.2413
Inflation(—1) —0.1145 —0.356 —0.3214 —0.8241
GDP initial 5.7499" 1.7673 —0.0122 —0.1341
Domestic Investment growth (—1) -0.0007 —0.0187 0.0744’® ~1.4607
Pop. Growth —0.8447 —0.7964 —1.3829 —1.2651
Gov. spending growth(—1) —0.1057 0.2799 —0.8283 1.6617
Non-renew. Cons. Growth 0.1915 —0.1241 1.6120 —0.9788
Terms of trade growth(—1) —0.1986 —1.4467 0.2378" 1.6416
Budget deficit ;¢ 0.4248" 1.7860 -0.3009 —1.0284
Term spread (—1) ~6.8085 —4.6942 7.7431" 4.6546
M2 growth —0.3680 0.0357 —2.2983 0.2131
No. Obs 286x13 286x13
No. Countries 26 26
RSS 1017.382 1017.382
AIC criterion 1.528 1.528
BIC criterion 1.835 1.835
Nb. parametters 24 24
Opti no. transit. fc. 1 1

Note:i) ™ " - significant at 1% level, 5% level and 10% level, respectively; ii) the threshold 1.46 indicates a coefficient
which is significant at 7% visk level for a unilateral test (a positive effect of investment growth on GDP growth is

expected).
Table 6.
PSTR estimates with the OPEC nominal oil price as the threshold variable: 2012-2022.
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The Opec real oil pric Slut :“::
120,0 i \)“'-.
o 1on. e B
E=
E we
5
o
2 o
£
5
]
2 0
|
0,00 !
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
YEAR PERIOD s10

06 s ;0 w2 03

Figure 1.
(a) The evolution of the real OPEC oil price: 2012—-2022; (b) BRENT crude oil price. Note: Authors computation.
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Figure 2.
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Chapter 7

To Be or Not to Be Connected:
Reconstructing Nonlinear
Dynamical System Structure

L. Gerard Van Willigenburg

Abstract

On the one hand, controllability and observability relate to the ability to control
and observe the state of a dynamical system. On the other, controllability and observ-
ability are known as structural properties relating to internal connections of dynami-
cal systems. If the dynamical system is nonlinear, subtle differences between these
two occur and defining and computing these properties becomes very much more
complicated, because they rely on differential geometry instead of linear algebra. One
contribution of this chapter is to define and compute controllability and observability
of analytical dynamical systems in a particularly simple, unifying manner, based on
connectivities and sensitivities. A second contribution is to present a new canonical form
of controllability and observability singularities, showing that these are essentially initial
states that permanently switch-off connections to the input and output of the system.
The third and final contribution is to show that by considering these singularities as
different systems, nonlinear system structure becomes a global property, instead of a local
one. What does remain local are state-transformations transforming dynamical sys-
tems into canonical forms revealing system structure. By using these canonical forms
as the starting point, our simple, unifying definitions of controllability and observabil-
ity are obtained. Examples are presented to illustrate these results.

Keywords: canonical forms, controllability, observability, accessibility, reachability,
Kalman decomposition, structural singularities, lie algebraic rank conditions (LARC),
sensitivity rank conditions (SERC), sensitivity-based algorithms

1. Introduction

Initiated by Kalman, between 1955 and 1970 the use of state-space representations
and time-domain analysis led to a series of discoveries of fundamental concepts and
design methodologies for the control of both linear time-invariant and linear time-
varying dynamical systems having multiple input- and output-variables. Until then,
most analyses were limited to the frequency domain and linear time-invariant systems
with only a single input-variable and output-variable. Notable discoveries were the
controllability and observability properties of linear systems [1, 2], and that these are
dual as well as structural properties [3]. They play an important role in the solution of
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the linear quadratic state and output feedback design problems, as well as the
realization problem of input—output maps [1, 4, 5]. Around the same time, Bellman
[6] and Pontryagin [7] laid major foundations for optimal control theory applicable to
multivariable nonlinear systems. Together with the development of computers, this
facilitated the design and implementation of optimal feedback control systems for
nonlinear dynamical systems on computers available at the time [8].

Around 1970, attempts started to generalize the theory and concepts developed
for linear systems to nonlinear systems. The nonlinearity of systems significantly
complicates concepts. System properties generally become local instead of global, and
the corresponding mathematics requires differential geometry instead of linear
algebra. Differential geometry very much complicates definitions, derivations, and
computations involving Lie algebras. Still, nonlinear system theory managed to
generalize most aspects of linear system theory [9-11]. Despite the many complica-
tions associated with nonlinear system theory, the Kalman decomposition and other
canonical representations of nonlinear dynamical systems turn out to posses the same
simple structure as those obtained for linear systems [2, 3, 9, 11]. This important
observation will be exploited in this chapter.

More recently, controllability and observability of large complex networks have
become an important research topic. Although large networks are very often modeled
by linear dynamics, chemical networks are generally nonlinear, requiring analysis of
what is sometimes called nonlinear controllability and nonlinear observability [12-16].
Sensitivity-based algorithms are a promising development to determine these proper-
ties, especially for large-scale nonlinear dynamical systems [17, 18]. They reveal the
importance of connectivities and sensitivities in defining and computing controllabil-
ity and observability as explained and illustrated in this chapter.

As opposed to ordinary dynamical system representations, canonical representa-
tions reveal connections of state-variables to the input and output in a straightforward
manner that can therefore be visualized using directed graphs. An important contri-
bution of linear and nonlinear system theory was to discover these canonical repre-
sentations that can be obtained for any dynamical system by a suitable change of
state-space coordinates. This change of coordinates is realized by a state-
transformation that may hold only locally. This situation is sketched in Figure 1.

General analytical nonlinear

dynamical systems
y 5 Change of state-space

coordinates/State-
transformation

Canonical forms
Controllable state variables: state variables connected to the input
Observable state variables: state variables connected to the output

Figure 1.

Canonical forms facilitating simple definitions/explanations of controllability and observability as connectivities to
the input and output vepresenting structural properties of dynamical systems. Changes of coordinates/state-
transformations connect general analytical nonlinear dynamical systems to their canonical forms.

114



To Be or Not to Be Connected: Reconstructing Nonlinear Dynamical System Structure
DOI: http://dx.doi.org/10.5772 /intechopen.1004311

Given the situation sketched in Figure 1, we asked ourselves the following
question: “When considering nonlinear dynamical system structure, would it not be better
to start from canonical vepresentations”?

This chapter provides a positive answer by showing that canonical representations
reveal structural properties easily and naturally. This allows us to define controllability
and observability based on these connectivities. By first considering the structure of
canonical forms, the mathematical complexity only comes in at the very end, when
extending canonical representations to ordinary ones by means of state-transformations
(see Figure 1). We will also show how these state-transformations and their associated
Lie algebraic computations can be avoided completely by using sensitivity-based
algorithms to establish controllability and observability. Avoiding these is especially
important for large-scale systems. The algorithms compute a sensitivity rank condition
(SERC) and uncontrollable/unobservable state-variables or modes, if any [17-19].

Remarkably, a canonical representation related to controllability/observability sin-
gularities, being points in the state-space where controllability/observability properties
change, seems not to have been considered in the literature. A canonical form of
controllability/observability singularities will be presented here and shown to be the key
to considering nonlinear system structure as a global property, instead of a local one.

The terminology used in this chapter coincides with that commonly used in
nonlinear system theory with one notable exception. What comes out as controllabil-
ity in this chapter, is commonly known as local strong accessibility if the system is
nonlinear and affine in the input [9, 10, 18-20]. We reflect on this notable exception
and other results of this chapter in the conclusion section.

2. State-space representation of dynamical systems

To facilitate their analysis, numerical solution and control, dynamical systems
described by ordinary differential equations are often represented in the so-called
state-space form given by

(t) = f(x(t), u(t)),x €R™, u eR™, 1)
y(t) = h(x(t),y eR". (2)

Within this formulation ¢ denotes time, x € R™ is the state-vector or state collecting
all state-variables x;, i = 1,2, ..,n,, u € R™ is the input-vector or input collecting all
input-variables u; €R, i =1,2,..,n,, and y € R™ is the output-vector or output
collecting all output-variables y;, i = 1,2, ..,n,. For convenience, we will generally drop
the argument ¢. Eq. (1) describes how the state x propagates and depends on the input
u and is called the state-equation. Eq. (2) describes how the state x maps on the output
y and is called the output-equation. Several results from nonlinear system theory, used
in this chapter, rely on differential geometry that applies to systems Egs. (1) and (2)
that are affine in the input, i.e.

flx,u) =fo(x) + nzufk(x)uk, LX) ER™, k= 0,1,..,n,. 3)
k=1

In Eq. (3),f,(x),k = 0,1, ..,n,, are vector functions with f(x) called the drift
term. Throughout this chapter f, % in (1)-(3) are assumed to be analytic vector
functions.
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3. Canonical state-space representations of dynamical systems
3.1 Controllability as obtained from its canonical form

Reconsider Figure 1 and let
x' =Y¥(x),x,x, VY ER™ (4)

represent the state-transformation that locally puts the system (1) into what will
be called the controllability canonical form in this chapter, in line with the early
development for linear systems as presented in [21], while appearing in [9-11] under
different names associated with controllability.

& =f(xu), ¥ = [z;] = [qﬂ(x)}’f/(x’,u) = f’u](:;’”(:,c;”),u) . (5)

In Eq. (5), the transformed state x” separates into x’* containing state-variables that
are connected and x' containing state-variables that are disconnected from the input. A
corresponding separation of the state-transformation ¥(x) into ¥*(x) and ¥*(x) is
specified in (5). Each ¥;(x), i = 1,2, .., n, is a scalar function of the state-variables x
and equal to the transformed state-variable x/. Obviously, parts of the system denoted
by the uppercase # that are disconnected from the input cannot be controlled.

Definition 1.

In the controllability canonical form (5), if x| ex™ then x; is called an uncontrolla-
ble state-variable of system (5) and ¥;(x) € ¥ (x) is called an uncontrollable mode of
system (1), (3). If x} €x’, then x/ is called a controllable state-variable of system (5)
and ¥;(x) € ¥ (x) is called a controllable mode of system (1). ¥;(x) not necessarily
depends on all state-variables x;, i = 1,2, .., . The state-variables of the set
{x;|¥;(x) depends on x;} are called state-variables making up the controllable/uncon-
trollable mode ¥;(x).

Theorem 1.

1) Along trajectories of analytical systems (1), (3) the number of controllable
modes 7% = dim(¥*(x)) and the number of uncontrollable modes n? = dim (¥*(x)) is
constant but may depend on the initial state. For most initial states, n%, n” are identi-
cal. For exceptional initial states, called singularities in Section 4, n% = n, —n¥ is
reduced. 2) Along trajectories of system (1), (3) the set of state-variables
{x;|¥*(x) depends on x; } making up all uncontrollable modes is invariant.

Proof.

1) and 2) follow from the Hermann-Nagano theorem in [22] according to which
the state-space of an analytical dynamical system (1), (3) foliates into manifolds of
dimension 7%, as specified in Theorem 1. Trajectories of system (1), (3) stay on a
single manifold, the manifold being determined by the initial condition. These mani-
folds can be described locally using the coordinates x” = ¥(x) given by state-
transformation (4) into the controllability canonical form.

Corollary 1.

Within the controllability canonical form (5), uncontrollable state-variables x™*
and controllable state-variables x’* correspond one-to-one with uncontrollable
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modes W (x) and controllable modes W*(x) of the system (1). The uncontrollable
state-variables and modes are disconnected from the input, whereas the controllable
state-variables and modes are connected to the input. Along trajectories of analytical
systems (1), (3) the number of controllable and uncontrollable modes 7%, nz are
invariant but may depend on the initial state of the trajectory. For most initial

states, n%,n" have the same value. For exceptional initial states, called controllability
singularities in Section 4, the number of controllable modes n% = n, — n is reduced.
Along trajectories of analytical systems (1), (3) the set of state-variables making up all
uncontrollable modes is invariant.

Definition 1 together with Corollary 1 are graphically represented by Figure 2.
From them the following alternative definition of controllability in terms of connec-
tivities is obtained.

Definition 2.

Analytical dynamical systems (1), (3) are controllable along a trajectory if in the
controllability canonical form (5) no state-variable x}, i = 1,2, .., s, or equivalently no
mode ¥;(x) of system (1), (3), is disconnected from the input.

Remark 1.

Computation of the state-transformation ¥(x) is generally performed using Lie
algebraic computations [9-11]. These generally become problematic and time-
consuming for large-scale systems. Sensitivity-based algorithms, especially developed
for large-scale systems, provide a very attractive alternative [17-19]. In Section 5 we
will elaborate on this.

Theorem 2.

Without having to compute the state-transformation (4), sensitivity-based

algorithms very efficiently compute 7% = dim(x") and #* = dim (x'ﬂ> as well as the

set of state-variables making up all uncontrollable modes x'* within the controllability
canonical form (5), along trajectories of analytical systems (1), (3).
Proof.

Follows from [18] in which #* = dim(x"*), n* = dim (x’ﬁ) and the set of

state-variables making up all uncontrollable modes are all obtained from a
singular value decomposition (SVD) of a sensitivity matrix S € R, n, >n,.
Each zero singular value represents an uncontrollable mode, and each nonzero
singular value a controllable mode. The nonzero components of the
corresponding right singular vectors indicate the state-variables making up the
corresponding mode.

Figure 2.

Graphical representation and partitioning of a system with an input u along a trajectory. The state-space naturally
partitions into a controllable part vepresented by the controllable modes V" (x) and an uncontrollable part
represented by the uncontrollable modes W* (x). " (x) is disconnected from the input whereas W* (x) is connected to
the input. Connections internal to the system ave represented by arrows with broken lines.
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3.2 Observability as obtained from its canonical form

A development very similar to that of controllability in the previous section applies
to observability. Because of this similarity, this section focuses on the differences.
Reconsider Figure 1 and let

x'=W(x),x,x,¥eR™ (6)

now represent the state-transformation that locally puts the system (1)-(3) into
what will be called the observability canonical form in this chapter while appearing in
[9-11] under different names associated with observability.

Fecsu) 7)
x') = h(x”
fy_(x’y,x’y,u) ) = h(x”)

In Eq. (7), the state x’ separates into x” containing state-variables that are
connected and x” containing state-variables that are disconnected from the output. A
corresponding separation of the state-transformation ¥(x) into ¥ (x) and ¥ (x) is
specified in (7). Given the similarities with controllability in the previous section
Definition 1, Theorem 1, Definition 2, Corollary 1 and Theorem 2 in the previous
section apply if controllability is replaced by observability, Eq. (5) by (7) and input u
by output y. Figure 2 then turns into Figure 3.

Remark 2.

To construct analytical systems having certain controllability/observability proper-
ties, one can select the corresponding canonical form and choose the system parts
arbitrarily. This generically realizes the corresponding controllability/observability
properties, since there is the possibility, having zero probability, that an arbitrary
choice causes additional uncontrollable/unobservable modes. Having realized the
appropriate controllability/observability properties this way, we may subsequently
“hide” them the by performing a state-transformation.

Remark 3.

Following Remark 2, all canonical forms have the property that the system parts do
not cause additional uncontrollable/unobservable modes.

v

A

Figure 3.

G;i?ahical representation and partitioning of a system with an output y along a trajectory. The state-space
naturally partitions into an observable part represented by the observable modes ¥ (x) and an unobservable part
represented by the unobservable modes W (x). W (x) is disconnected from the output whereas W (x) is connected to
the output. Connections internal to the system are represented by arrows with broken lines.

118



To Be or Not to Be Connected: Reconstructing Nonlinear Dynamical System Structure
DOI: http://dx.doi.org/10.5772 /intechopen.1004311

3.3 The Kalman canonical form of analytical nonlinear dynamical systems

Partitioning of systems along trajectories into parts that do and do not connect to
the system input and output were obtained in sections 3.1, 3.2. These parts are
represented by controllable/uncontrollable and observable/unobservable modes.
These two separations lead naturally to a separation into four system parts, as
represented for linear systems by the Kalman decomposition [3]. A similar decompo-
sition for nonlinear system exists [9-11]. As before, the latter decomposition is
obtained from a suitable state-transformation

x' =¥(x),x,x, P €R™ (8)

that now transforms the system into the form

N (x’“y L5 K ™ u) 1
X ¥ (x)
s P (x) i (x'“y,x’uy, u)
& =fxu),x == L feu) = __ ,
X7 P (x) f/uy (x,ﬁy,xﬁ}7>
1y iy
x P (x) £ (x,ﬁy)

y =h'(x)=h (x'”y,x’ﬁy)
9

where W (x) are controllable and unobservable modes that are connected to the
input and disconnected from the output and similarly for ¥ (x), ¥ (x) and ¥* (x).
The decomposition (9) will be called the controllability observability canonical form or
Kalman canonical form in this chapter. It is graphically represented by Figure 4.

Figure 4.

Graphical representation and partitioning of a system with input u € R™ and output y € R™ along a trajectory.
The state-space partitions into four parts represented by the modes ¥ (x), ¥ (x), ¥ (x) and ¥ (x). The
partitioning is based on whether or not system parts connect to the input and output.
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Remark 4.

Not all system parts in Figures 2—-4 have to be present. Also, not all internal
connections have to be present as long as the connectivity of system parts with the
system input and output remains unchanged. In Figure 4 for example, the connection
from ¥ (x) to ¥ (x) may be absent as well as the one from ¥ (x) to ¥ (x).

Remark 5.

From Figure 4 observe that ¥ (x) in the only part that may be controlled by
output feedback.

4. Controllability/observability singularities: Initial states affecting
nonlinear system structure

Linear systems are described by (1)-(3) with
f(x,u) = Fx + Gu, h(x) = Hx. (10)

F,G and H are real matrices that fully determine the interconnections and system
structure. The entries of F, G and H do not depend on x nor on . Therefore, the time-
dependency of the state x and input # does not change the system structure [3].

For analytical nonlinear dynamical systems (1)-(3) however, this need no longer
be the case. Initial states may switch-off, i.e. disconnect, connections to the input and
output, thereby changing the system structure [16, 23]. To illustrate this, we start with
an example presented in the next section.

4.1 Examples and definition of controllability/observability singularities

Example 1
—2x%1 — X3+ Uq
% =f(oe,u)yfc,u) = | (1—2x2) (1 +u1) |,x,f €R}ueR?, (11)
—xy

(1 — Xz)xg

y =h(x), hix) = [ },y,heRz. )

X2

If, in Eq. (11), we take x2(0) = 1, then x; = 0 and thus x, = 1 over the entire
time-domain. In this way, the constant state-variable x, disconnects itself from the other
state-variables and input. From the output-Eq. (12) and x, = 1, we observe that both x3
and x; are disconnected from the output. These disconnections reduce the number of
controllable state-variables connected to the input as well as the number of observable
state-variables connected to the output. Accordingly, the system structure is changed.
Application of a state-transformation to system (11), (12) and initial states satisfying
x2(0) = 1, does not change the system structure, but does change state-variables into
modes and constant state-variables into non-constant ones. To stress the role of initial
conditions in determining system structure [23], we introduce the following definition.

Definition 3.

Initial states of the analytical dynamical system (1)-(3) that reduce the number of
controllable/observable modes as compared to initial states in their neighborhood we
call controllability/observability singularities of the analytic system (1)-(3).
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Controllability singularities occur for instance in chemical systems when
zero initial concentrations of some species prevent subsequent chemical reactions
to occur [15]. They are different from what are mostly called singular states of dynam-
ical systems which have a different degree of non-holonomy as compared to neigh-
boring states [24]. As to our Example 1, according to Definition 3, initial states
satisfying x,(0) = 1 are both controllability as well as observability singularities of
system (11), (12).

In Example 1, if x, = 1 would hold at isolated times only, this does not affect
system structure since the disconnections from the input and output disappear
immediately. But if x; = 1 holds along some part of a trajectory, the system structure
changes along that part of the trajectory causing what is called temporal system struc-
ture [25-27]. Because analytical dynamical systems do not allow state-variables to be
constant on a time-interval and time-varying outside this time-interval, the structure
of analytic systems is fixed along trajectories [22]. But analytic systems do allow state-
variables to be very close to being constant along part of a trajectory. In Example 1,
when x, becomes very close to 1, one may say that the analytic system (11), (12)
“almost changes structure” [27]. But for x; to really change the analytic system
structure, it needs to be exactly 1 over the entire time domain. For arbitrary inputs
u(z) this can only happen if state-variable x, = 1 is disconnected from the input and
other state-variables, so when x,(0) = 1.

We deliberately constructed system (11), (12), starting from both the controllability
canonical form (5) and the observability canonical form (7), while letting the constant
state-variable x, = 1, that is disconnected from the other state-variables and input, switch-
off state-variables from the input and output causing the controllability and observ-
ability singularities. The next theorem states that this type of switching is the basic
mechanism causing controllability and observability singularities.

Theorem 3.

For analytical dynamical systems (1)—(3), canonical representations of controllabil-
ity/observability singularities exist in which constant state-variables that are discon-
nected from the input and the remaining state-variables switch-off state-variables from
the input/output causing the controllability/observability singularities.

The canonical representations of controllability/observability singularities will be
given in the next section and the proof in Appendix 2. As to controllability, observe
that Definition 3 and Theorem 3 comply with the Hermann-Nagano theorem [22],
stating that for analytic systems (1)-(3) the number of uncontrollable modes nz =

dim(x*) is fixed along trajectories, but may depend on the initial state.

4.2 Canonical state-space representations of controllability/observability
singularities

To obtain the canonical representation of controllability singularities, we start
from the controllability canonical representation (5) dropping accents of transformed
states. We denote by x* the state-vector containing the constant state-variables that
realize the switching-off. The switching-off occurs if x#(0) = ¥%, in which ¥* is a
steady state of x** that is unaffected by the input and state-variables not contained in x*.

We denote by x** the vector of state-variables that become uncontrollable because
they are switched-off from the input and by vector x** the controllable state-variables
that are not switched-off from the input, and so:
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X = [x_} (13)
X

To the controllability singularities x*(0) = X the following canonical singular
controllability form corresponds:

s Un (xuu,xuﬁ’xﬁ’ u)
X = (o, X ) | (14)
& £ ()

x’ﬁ(O) =5 = x‘ﬁ(t) =x%, E(x””,x“ﬁ,xﬁ,u) :fuﬁ(xuﬂ,xﬁ), —oco<t<oo. (15)

Eq. (15) describes that if x#(0) = X, xare constant state-variables, unaffected by

the input and state-variables not captured by x*“, that realize the switching-off.
Therefore,

25 o) (16)

In a similar fashion, starting from the observability canonical representation (7),
observability singularities x¥(0) = x¥ switch-off state-variables from the output. We
denote the vector of state-variables that become unobservable because they are
switched-off from the output by x?.Vector x”” represents the observable state-
variables that are not switched-off from the output, and therefore:

o= [W]. (17)

xJ’y

To the observability singularities x¥(0) = x¥ the following canonical singular
observability form corresponds:

P 7 (7,27
x= |27 | = fﬂ (xyy,xﬁ) Y= h(xyy,xﬂ). (18)
4 F(x07,507,9)

x(0) =57 = 19 (t) =57, (7, 57) =2 (6”),h(x7,57) = h(x?), — co<t<oo.
(19)

Eq. (19) describes that if x7(0) = x¥¥, x¥ are constant state-variables, unaffected
by the input and state-variables not captured by x?, that realize the switching-off.

Theorem 4.

By considering controllability/observability singularities as different systems, the
structural properties of analytical dynamical systems (1)-(3) become global.

Proof.

From Theorem 1, the number of controllable and observable modes is constant
along any trajectory of an analytical dynamical system (1)—(3). Therefore, these only
depend on the initial state of a trajectory. By Definition 3, controllability/observability
singularities are the only ones changing system structure.
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5. Determining system structure through sensitivity-based algorithms

5.1 Determining controllability/observability of systems and individual
state-variables

Because uncontrollable state-variables and modes are disconnected from the input,
their sensitivity to input-variables vanishes. Because unobservable state-variables and
modes are disconnected from the output, the sensitivity of the output to them, van-
ishes. Sensitivity-based algorithms capture these insights by calculating a sensitivity
matrix S € R™*", n, >n, [17-19] along a trajectory of system (1)—(3). As stated by
Theorem 2, a singular value decomposition (SVD) of this matrix provides the number
of uncontrollable/unobservable modes as the number of zero singular values. In other
words, if the matrix is full-rank i.e. having no zero singular values, the system is
controllable/observable along the trajectory and satisfies what is called a sensitivity
rank condition (SERC) in [17-19]. Moreover, the state-variables making up each
controllable/observable and uncontrollable/unobservable mode are indicated by the
nonzero components of the corresponding right singular vectors. The state-variables
making up the uncontrollable/unobservable modes are represented by what is called a
controllability/observability signature in [17-19]. Thereby, without calculating state-
transformations and canonical forms, the sensitivity-based algorithm provides almost
all information system and control engineers are interested in. Specifically, they
determine the controllability and observability of individual state-variables of the
system (1)—(3) when applying the following definition.

Definition 4.

A state-variable x;, i = 1,2, .., n, is called controllable/observable if it does not
make up any uncontrollable/unobservable mode. Otherwise, state-variable x; is called
uncontrollable/unobservable.

5.2 A challenging small-scale example containing two controllability singularities

Although being small-scale, the example presented next is a challenging one,
because it contains two controllability singularities. Also, close to the singularity,
transformed state-variables that have to be computed by the sensitivity-based algo-
rithm, tend to grow very large. The example illustrates the Hermann-Nagano theorem
in [22], which is used and described in the proof of Theorem 1, as well as the canonical
form of controllability singularities.

Example 2: An uncontrollable system with two controllability singularities.

—X? 2’CBxl
x=f(c,u)=| %1 |u1+ 2x327 Uy (20)
0 x% +1-— x% — x%

System (20) originates from [11], example 3.8. From the analysis of this example
in [11], we conclude that system (20) has a single uncontrollable mode foliating the
state-space into submanifolds with dimension 2. These submanifolds are tori given by

the equation
(¢ +x3 +x3+1)/\/x} +x3 =0, (21)
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with ¢ > 2 a constant that is determined by the initial conditions. This constant
tends to infinity when approaching the singularity x; = x, = 0, where the torus
degenerates into the x3 axis. The other singularity occurs for x? + x3 = 1, x3 = 0,
resulting in ¢ = 2, where the torus degenerates into a circle (Appendix 1 provides
further details). The dimensions of this foliation are thus two for the tori and one for
the x3 axis and circle x% + x% =1, x3=0.

Figure 5 concerns the controllability of system (20). It graphically represents the
singular values 0,7 = 1,2, 3 (left panel) determining SERC and the components of the
right singular vector v3(right panel) corresponding to the only (numerically) zero
singular value 63 making up the controllability signature [18]. From the right panel of
Figure 5, we observe that all the components of v3 are nonzero, implying that all three
state-variables together make up the single uncontrollable mode. Therefore, according
to Definition 4, no state-variable is controllable. When represented in the controlla-
bility canonical form (5), obtained after state-transformation (22), to be presented in
the next section, the single uncontrollable mode is transformed into the single uncon-
trollable state-variable x5 = 1/c. This is confirmed by the controllability signature in
the right panel of Figure 6. Then, according to Definition 4, the other two state-
variables x| = x3, x, = x1 are controllable.

Singular valuss sansithyiby matix p Signatura
. T
107 ]

rts sngLlar vootor

S ngularvalies
E]
%

Figure 5.
Singular values (left panel) and controllability signature (right panel) of system (20) confirming the existence of
one uncontrollable mode involving all three state-variables.
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Figure 6.
Singular values and controllability signature after transformation (22) into the controllability canonical form (5)
showing x';, = 1/c as the only uncontrollable mode and state-variable.
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8%,

.,
z

Figure 7.
Directed graph of system (20) (left panel) and its controllability canonical form (right panel). Only the latter
reveals uncontrollability of state-variable x', = 1/c.

Figure 7 shows directed graphs of the original system (20) (left panel) and its
controllability canonical form (right panel). Observe that only the latter directed
graph reveals uncontrollability, illustrating that directed graphs only reveal uncon-
trollability/unobservability, when the system is represented in canonical form (minus
permutations of state-variables).

In the next section we will show how each of the two controllability singularities
can be made to match the canonical singular controllability form (14), (15). Note that
this canonical form is obtained as a special case of the controllability canonical form
(5). The latter canonical form will therefore also be obtained in the next section.

5.2.1 Canonical representations of the two controllability singularities

For system (20), the controllability singularity x,(0) = x,(0) = 0, implies
x1(t) = x2(t) = 0, t > 0, which gives rise to two uncontrollable modes involving state-
variables x1 and x;. This leaves state-variable x3 as the single controllable state-
variable, as confirmed by Figure 8.

Since x3 is the single controllable state-variable, in the canonical singular control-
lability representation (14), (15) x** can only involve state-variable x3 and we take
x"* = x3. Since ¢ in Eq. (21) is constant it may serve as x*. However, ¢ — o0 asx; — 0,

Singular values sensitivity matrix - Signature
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Figure 8.

Singular values (left panel) and controllability signature (right panel) of the controllability singularity x, (o) =
x,(0) = o of system (20). These confirm two uncontrollable modes involving state-variables x, and x,, leaving one
controllable state-variable x .
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xy — 0. This is overcome by taking x” = 1/c. Finally, we may choose either x; or x; as
x". For x"* = x1, the state-transformation into the canonical singular controllability
form (14) becomes

Xq X X3
= x| = (x| = | x| =¥P(x), (22)
x X" 1/c

—5U

with x™ =[x}, x%] " = [x1,1/c]" and ™ = [0, 0]”. Appendix 1 reveals that the
inverse x = ¥~ !(x’) is only one-to-one locally. Figure 9 confirms that x = x3 is the
single controllable mode and state-variable. The two uncontrollable modes involve the
other two state-variables x, = x1 = 0, x5 = 1/c = 0, —oo <t < co.

The second controllability singularity of system (20) concerns initial states satis-
fying x3(0) +x3(0) = 1, x3(0) = 0. Then x2(¢) +x3(¢) = 1, x3(¢) = 0, —o0 <t < o0 and
the torus (21) degenerates into a circle which is obtained for ¢ = 2. Figure 10 confirms
that we obtain the canonical singular controllability form (14), (15) by taking

U u T —SU .
x™ = 0q, X = x3, 6™ = 1/e, 6™ = [}, x| andx” =0, 1/27, ie. by means of

the state-transformation

Singular values sensitivity matrix

Slgwum

10

Singular values
=]
Components two singular vectors
o
)

Xy %y ]

Figure 9.
Singular values and controllability signature after transformation (22) into the canonical singular controllability
form (14) showing x, = x5 as the only controllable mode and state-variable.
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Figure 10.
Singular values and signatuve after transformation (23) into the canonical singular controllability form (14)
showing x', = x, as the only controllable mode and state-variable.
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x’l ju X1
= x| = (x| = | a3 | =P(x). (23)
x4 " 1/c

As a second example we reconsider system (11), (12) of Example 1. From our
sensitivity-based algorithm we find system (11) to be controllable, since the singular
values obtained are 3.2782e + 00, 7.5852e — 01 and 2.6537e — 02. This system has a
controllability singularity x,(0) = 1. Figure 11 displays the singular values and con-
trollability signature of this canonical controllability singularity, showing that only the
2nd component is nonzero confirming that x; is the only uncontrollable state-variable.
From our sensitivity-based algorithm we also find system (11), (12) to be observable,
since the singular values obtained are 2.0052e + 00, 8.5798e — 01 and 3.4738e — 01.
As explained in Section 4.1 x,(0) = 1 is also an observability singularity. Figure 12
confirms this, showing that x; is the only state-variable that remains observable.

To summarize, for system (11), (12) of Example 1, x*(0) = x,(0) = 1 =x% is a
canonical controllability singularity satisfying (14) with x* = x4, XM = [xz,xg]T and
x* = @, as well as a observability canonical singularity x7(0) = x,(0) = 1 = x¥ satis-

. . = T =
fying (17) with »¥ = x,%” = [x1,x3] and ¥’ = @.
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Figure 11.

Singular values (left panel) and controllability signature (vight panel) of the controllability singularity x,(0) = 1
of system (11).
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Singular values (left panel) and observability signature (vight panel) of the observability singularity x,(0) = 1 of
system (11), (12).

127



Nonlinear Systems and Matrix Analysis — Recent Advances in Theory and Applications

ingular valu

8

s plot showing properly located gap:

S L
107 CPU times versus number of uncontrollable modes
-nw—hi-inlu;n!n r = .
11 : it Fyvi !
LI HEHE H'”
TN LHIANL 5
AT ARRE
N ! ¥ #
: ¥ " 1.7
3 I <
]
2 w
= Sl ¢
& 10 E
3 5 *
2 815 s
& o
*
* +
* &
14 * % .
10718 = s + i
X 0
13
102t 7 2 5 1.2
0123 4567 8 9 1011213141516 17 1819 20 0123 45867 89 1011213141516 17 181920
Number of uncontrollable modes Number of uncontrollable modes
Figure 13.

The sensitivity-based algorithm correctly (left panel) and efficiently (vight panel) establishes the number of
uncontrollable modes of systems with 200 state-variables and 25 input-variables: The number of uncontrollable
modes in each case equals the number of numerically zevo singular values because some of these overlaps.

5.3 Large-scale examples

To illustrate and challenge the capability of sensitivity-based algorithms to solve
high-dimensional problems efficiently, we generated large-scale nonlinear dynamical
systems having 200 state-variables and 25 input-variables, following Remark 2 at the
end of Section 3.3. Within the controllability canonical form of linear systems [3, 21],
we selected the nonzero parts of the time-invariant system matrices random, while
taking different values for the number of uncontrollable state-variables:

"Z =0,1,2,.,,20. To change these linear time-invariant systems into nonlinear sys-
tems with 7% uncontrollable modes, we applied the following nonlinear state-
transformation

X = Xi, ), = €1 =1,3,5,7,..,199. (24)

We applied the sensitivity-based algorithm to the nonlinear systems with state x’.
The left panel of Figure 13 shows the singular values obtained from the sensitivity-
based algorithm.

It shows that all gaps in the singular values are properly located (recognizing that
several singular values overlap), because the number of singular values below this gap
should be considered numerically zero, each one corresponding to an uncontrollable
mode. The right panel shows the very short CPU times required to compute each
result that is based on the concatenation of sensitivity matrices of three short trajec-
tories. For details concerning the sensitivity-based algorithm we refer to [17, 18, 28].
We only mention here that, by exploiting duality, the sensitivity-based algorithm is
also able to establish observability of nonlinear systems. The computations we
performed on an ordinary PC using MATLAB.

6. Conclusions

We showed how canonical representations and sensitivity-based algorithms
simplify and unify the definition, analysis and computation of controllability
and observability of analytical, nonlinear and dynamical systems. For dynamical
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systems represented in canonical form, controllability/observability simply
translate into whether state-variables connect to the input/output. For systems
not represented by canonical forms, we showed that controllability/observability
translates into scalar functions of all state-variables, called modes, being connected
to the input/output. Controllable/observable and uncontrollable/unobservable
modes, as well as the state-variables involved in these modes, we computed very
efficiently, using sensitivity-based algorithms. These algorithms nicely circumvent
Lie algebraic computations, as well as state-transformations into canonical forms,
which may both give rise to computational difficulties, especially for large-scale
systems.

As for the restriction in this chapter to only study analytical dynamical systems, we
remark that systems not belonging to this class are usually piecewise analytic. Then
the analysis and results of this chapter apply to each separate interval over which the
system is analytic. We also remark that by augmenting the system state with constant
parameters, we can include the structural property identifiability as a special case of
observability.

Originally, controllability is the ability to steer the system from any state to
another, by means of the input. According to the analysis and definitions presented
here, controllability relates to the connectivity of internal state-variables and modes to
the input. For linear systems they are equivalent. If the system is nonlinear and affine
in the input, our definition of controllability corresponds to what in the literature is
usually called local strong accessibility, that is a slightly weaker property if the drift
term is nonzero. As for the observability of dynamical systems, no such subtle differ-
ence occurs.

Starting from conventional canonical forms, we constructed new canonical forms of
structural singularities, obtained from the insight that these are caused by initial con-
ditions that permanently switch-off connections to the input/output. This insight also
suggests to consider structural singularities as different systems. We showed how this
turns system structure, determined by the dimensions of subsystems within
corresponding canonical forms, into a global property. On the other hand, state-
transformations into canonical forms may hold only locally.

If the state-space model has been developed from first principles (e.g. energy
conservation, Newton’s laws), state-variables have a clear meaning and interpretation.
Since sensitivity-based algorithms provide the state-variables involved in the uncon-
trollable and unobservable modes, they then immediately provide the exact informa-
tion a system modeler, designer or engineer is interested in.
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A. Appendix 1. Example 2 and the local character of its state-
transformations.

The state-space of system (20) in Example 2, according to [11] example 3.8, is
foliated as represented by Figure 14.

In Section 5.2.1, we reasoned and showed that state-transformations (22) and (23)
transform the two controllability singularities of system (20) into the corresponding
two canonical singular controllability forms. The inverse of state-transformation (23)
corresponding to the singularity ¢ = 2, where the torus degenerates into the circle
x% +x% =1, x3 = 0, requires recovery of x, from x} = x1,x5 = x3,x5 = 1/c. We find

two possible solutions: x; = 4-1/1 — x'1. This reveals that state-transformation (23)

and its inverse are only one-to-one locally.

The inverse of state-transformation (22) corresponding to the singularity ¢ = oo,
x1 =%, = 0, recovers x, = 0 from x; = 1/c = 0, x, = x1 = 0 as the limiting case ¢ =
oo of eq. (21). Finally, for initial states that are not controllability singularities, both
transformation (22) and (23) provide the controllability canonical form (5) with

7 T .
x* = x4 =1/c,x* = [x},x5] . To recover x; from x},x}, x5, 4 solutions apply, as
shown by the 4 dots in Figure 14. Again this demonstrates that in general, the state-
transformations into canonical forms are only one-to-one locally.

B. Appendix 2. Proof of theorem 3.

To proof Theorem 3 we will need the following lemma.

Lemma A2.1.

For analytic systems (1)-(3) a controllability canonical form (5) exists in which all
uncontrollable state-variables are constant. This also applies to controllability singu-
larities.

Proof.

Figure 14.
The manifolds of example 2 are tori described by (xi +x; +x5 + 1) /X% Fx2 = ¢>2 with ¢ a constant. The

two singularities are the circle c = 2,x2 + x2 = 1,x3 = 0 and the x; axis ¢ = co,x; = X, = 0. Knowing x,, x5, 1/c
the 4 dots represent 4 solutions for x,.
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For analytic systems (1)—(3), having nz > 1 uncontrollable modes, the state-space
foliates into submanifolds characterized by

F:R™ — R*,S(c) = {x|F(x) = c}, (25)

with ¢ € R™ a different constant vector for each submanifold S(c) that depends
only on the initial state x(0). S(c) are also referred to as level sets [11]. For state x to be
part of the corresponding submanifold S(c), the transformation F(x) may be consid-
ered as n” constraints to be satisfied by x. Starting from (1)-(3), chose as state-
transformation one with x™ = ¥#(x) = F(x) while taking x™* = ¥*(x) such that ¥(x) is
a state-transformation. Then the dynamics of the new state x’ is represented by the
controllability canonical form (5) satisfying x'*(¢) = c, i.e. with constant uncontrolla-

ble state-variables equal to x'(0).

As to controllability singularities, i.e. when x¥(0) = x is satisfied, the only thing
that changes is that the dimension of F(x) increases from n” to n? + n“*, where n** > 1
is the number of additional uncontrollable modes due to the controllability singularity.

Proof of Theorem 3.

The controllability canonical form of Lemma A2.1 applied to controllability singu-
larities x#(0) = X of system (1)-(3), complies with the canonical singular controlla-
bility form (14), (15) because the uncontrollable state-variables x*Ux™ will all be
constant. Since the switching state-variables are among them, i.e. x4 (xﬂuxuﬂ), the
state transformation will therefore have x* as constant uncontrollable state-variables.
Moreover, when x(0) = X™ is not satisfied, i.e. in a regular point close to the singu-
larity, we reobtain the canonical form (5) since the components of F(x) corresponding
to 1,z = dim (x**) are no longer constant, so no longer switching off connections to
the input.

As to the canonical singular observability form, the situation is slightly more
complicated. A Kalman decomposition of the system (1)-(3), given by (9), may be
applied at regular points close to the singularity. From this canonical form, consider
the part containing the observable state-variables

Pas] 9 (x4, %, )
H B [ £ ()

Because the reduced system (26) captures all observable modes, which are turned
into observable state-variables, it will still contain the observability singularity. Also, it
will still contain the switching state-variables x¥, because these influence the output
since they realize the switching-off when x¥(0) = x?. Applying the canonical form of
Lemma A2.1 to the reduced system (26), provides a canonical representation in which
the switching state-variables x7, that are uncontrollable, will be constant. This repre-
sentation may be extended with the parts that have been dropped in (26) to obtain a
canonical representation that complies with the canonical singular observability form
(18), (19). Moreover, when x¥(0) = x¥ is not satisfied, i.e. in any regular point close
to the singularity, we reobtain the canonical form (7) because x¥ is no longer constant,
so no longer switching off connections to the output.

],y:h(x”y,x”}’). (26)
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Chapter 8

Perspective Chapter: Families of
Seventh-Order KdV Equations
Having Traveling Wave and Soliton
Solutions

Alvaro Humberto Salas Salas

Abstract

In this paper, we consider the problem of finding traveling wave solutions to the
generalized seventh-order KdV equation (KdV7). Solitons are non-linear waves that
exhibit extremely unexpected and interesting behavior—solitary waves that propa-
gate without deformation. We use different approaches in order to find one and
multisoliton solutions. Soliton travels through liquid, solid, and gaseous media and
even as electron waves through an electromagnetic field. Making use of a traveling
wave transformation, we obtain a non-linear ode, which is solved using either
hyperbolic or elliptic algorithm. We also use the Hirota method to get the bilinear
form, and then we may obtain multisoliton solutions. In the end, we consider the
forced KdV7.

Keywords: traveling wave solutions, KdV7, solitons, cnoidal waves, deformed
sine-Gordon equation, Sawada-Kotera equation, Kaup-Kupershmidt equation, Ito
equation, ILax equation

1. Introduction

One of the most notable achievements in the second half of the twentieth century,
which also clearly illustrates the underlying unity of Mathematics and Nonlinear
Physics, is the Theory of Solitons. Solitons are nonlinear waves exhibiting extremely
unexpected and interesting behavior—solitary waves propagating without
deformation.

The other waves, the nonlinear ones, are less familiar and are very different from
the linear ones. A wave in the sea approaching the shore is a good example of a
nonlinear wave. Note that the amplitude, wavelength, and speed vary as the wave
advances, while in linear waves, these are constant. The distance between the crests
decreases, the height of the waves increases as they perceive the bottom, and the
speed changes. The upper part of the wave overtakes the lower part, falls on it, and the
wave breaks. There are even more intricate phenomena such as two waves that
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intersect, interact in complicated and nonlinear ways, and give rise to three waves
instead of two.

Now we come to solitons. During a horseback ride around Edinburgh, on the
Union Canal in Hermiston, very close to the Riccarton campus of Heriot-Watt
University, the Scottish engineer John Scott-Russell watched as a barge was towed
along a narrow canal by two horses that pulled from land to obtain a more efficient
design of boats.

A decisive step in the theory of integrable systems was the integration of the KdV
equation. Thus, Gardner, Greene, Kruskal, and Miura observed that if we consider a
potential #(x) for the stationary Schrédinger equation on the line, the corresponding
scattering data are transformed extremely easily when the potential changes as long as
u(x, t) satisfies the KdV equation. Therefore, given an initial condition % (x) for KdV,
we can find the associated scattering data and determine its evolution immediately.

In this paper, we consider the following generalized seventh-order KdV equation
(KdV7 for short):

U + audu, + bui + cutgny + du® Uzx + AUz, + Pylhay + yuttsy +u7e = 0. (1)

This nonlinear evolution equation describes the behavior of physical phenomena
such as shallow water waves and plasmas. Its conservation laws were determined to
predict its complete integrability [1, 2]. In Ref. [3], Wazwaz obtained one and two
soliton solutions for the following special cases:

* The seventh-order Sawada-Kotera-Ito equation:

Uy + 252uu, + 63u33c + 378uy sy + 1260% Uz, + 63ustise + A2usttay + 2luns, + sz, = 0.
(2)

* The seventh-order Lax equation:

Uy + 14003u, + 70”32 + 280uyttoy + 70u? Uz, + 70uUsctize + 42uthsy + 14uns, + uzx = 0.
(3)

* The seventh-order Kaup-Kuperschmidt equation

ur +2016u%u, + 6300 + 2268uusy + 504u” usy + 252U s, + 147U ttay + 42usis, + Uz, = 0.
(4)

These three cases of the seventh-order KdV equation are completely integrable.
This means that each of these equations admits an infinite number of conservation
laws, and as a result, each gives rise to N-soliton solutions. We aim to describe the
families of these KdV7 that admit soliton and cnoidal wave solutions.

2. Cnoidal wave solutions

Let

u(x,t) =p +qp(x — At + £0382,85)- (5)
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Then

2
uy + audu, + bui + cutt oy, + Adu” Uz, + Uz, + PUxlay + yutise + Uz =

1
5(1\/ 82 — g3 + 49> [2ap® — 2bg3q” — cgpq — 36180 — 24fig5q — 1440g; — 2

+ (6ap%g — 2bgyg” — cgoa® + 24dp” — Vaagyq — 36fgq — 3678, — 403 )+ OV
6p (aq* + 2cq + 120y + 8dq) go*+
2 (ag® + 4bq* + 6cq® + 12dq> + 72aq + 120fq + 360yq + 20160) 3],
where g = @(x — At + £552,,23)-
The system to be solved is
2ap> — 2bg,q” — cg,pq — 367g, — 24fg,q — 1440g, + 24 = 0.
6ap’q — 2bg,q* — cg,q* + 24dp® — 12ag,q — 36fig,q — 4032g, = 0. ©)
6apq” + 12cpq + 720y + 48dpq = 0.
2aq° + 8bq” + 12¢q* + 24dq” + 144aq + 2408g + 40320 = 0.
We will have a solution for the following parameter values:
_ 6p*(aq + 4d)
27 20 + cq? + 12aq + 36pq + 4032’
g, = 20— g — 361, + 2
7 2(bg* +128q +720) 7)
1o
P= q(aq +2c+84d)’

aq® +2(2b + 3¢ + 6d)g* + 24 (3a + 58)q + 20160 = 0.
Example. Let

u Y (x,£) — 63.5567u(x, £)*u®% (x,£) — 5089.7u%) (x,)* + 0.939611u(x, t)u>? (x,£) 4?9 (x, )
+0.471886u (x,)*u> (x, ) + 0.0310296u > (x, 1) u>% (x, 1) + 0.626069 "0 (x, 1) u*% (x,1)  (8)
40.48252u(x, £)u> (x, 1) + u? (x,1) = 0.

See Figure 1.
Let now

u(x,t) = B+ C cn*(wx — Mt + &g, m). 9)

Then
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-10.48
046u(x, )
0.44

~Jo.42

Figure 1.
u(x,t) = 0.480062 + g(—7.21261t — x — (4.70653 — 5.33465i);0.0139651, — 0.0000274235).

Uy + AP + b 4 cutt s, + du’ Uz, + AUz, + Pilthay + yusis, + sz, =
A — aB*w — 2BcCw® + 4B%dw? + 2BcCmaw?® — 8B*dmaw? + 8Caw® — 24Cmaw® + 16Cm*aw®

2Ccnsndn[— | +8CHw’ — 24CmpPw’ + 16Cm*pw’ — 16Byw® + 136Bmyw® — 136Bm?*yw® + 64w’ cn
—2112mae’ + 5952m*«’ — 3968m3w’

3aB*C — 4BcCa? + 4bC?a? + 2cC?w? — 8BCdw? + 8BcCma?* — 4bC*maw? — 2cC*maw? — 12B%dma®
+w | +16BCdma* + 16Caw* — 88Cmaw* + 88Cmaw* + 16Cpo* — 136Cmpw* + 136Cm*pw* + 16Cyw* | cn’
+240Bmyw* — 136Cmyn* — 480Bm?yw* + 136Cm*yw* — 4032maw® + 24192m*w® — 24192m3w®
3aBC? — 4bC*w? — 4cC*w? — 4C%dw* — 6BcCma? + 8bC*ma? + 8cC*ma? — 24BCdma*

+o | +8C%dme* + 72Cmaw* — 144Cm2aw* + 120Cmpa* — 240Cm>pw* + 240Cmyw* + 360Bm*yw* | cn’

—480Cm2yw* — 20160m2w® + 40320m3w®
+w (aC3 — 4bC*ma* — 6¢C*ma? — 12C%dma?* + 72Cm2aw* + 120Cm*fw* + 360Cm*yw* — 20160m3w6) cn’].

Next, we equate to zero the coefficients of c/ to obtain an algebraic system of
nonlinear equations. This system admits a solution under the condition

A1A, = 0, (10)

where

Ay = 17640a% 4 27a0?y + 90aafy + 180aay® + 75a%y + 300apy? — 840aby + 300ay® — 126aac — 210afc
—1260ayc — 504aad — 840apd — 2520ayd + 10b*y? + 14bc* — 3abyc — 5hfyc + 10by*c + 112bcd + 224bd*
—12abyd — 20bfyd — 20by*d + 14¢> — 3ayc® — 5pyc? + 126¢%d + 336¢d* — 15aycd — 256ycd — 30y%cd + 224d°
—12ayd* — 20pyd* — 30y%d*, and

Ay = 2822442 + 3aa® + 3a0?f + 63aa’y — 63aaf® + 234aafy + 297aay® — 135a® + 135a4%y + 168aab
+3192ab + 675afy* — 3528aby + 405ay® — 252aac + 588afc — 2772acy — 1008aad — 3024apd — 3024ayd
+504b> + 4a’b? — 16apb* + 84ab*y — 204%b* + —60pb%y + 360b*y? + 84b*c — 2016b°d — 70bc* + 2a’bc
—12apbc + 48abcy + 105%be — 120pbcy + 270bcy* — 672bcd + 2016bd* — 6a*bd + 12apbd — 108abyd
+90p%bd — 1808byd — 270by*d + 7¢® — 2apc? + 3ac’y + 106%c> — 452y + 45¢%y* + 168¢%d + 1008¢cd>
—3a’cd + 6aped — S4acyd + 456%cd — 90fcyd — 135¢y%d.

138



Perspective Chapter: Families of Seventh-Order KAV Equations Having Traveling Wave...
DOI: http://dx.doi.org/10.5772 /intechopen.1004789

The Egs. (2)-(4) obey the condition in Eq. (10).
Solving the system we obtain the solutions as follows:
aB® + 8B%*dmw? — 4B%dw? — 2BcCma? + 2BcCa?
+16Byw* + 136Bym?*»* — 136Bymaw* — 8aCw*
—8fCw* — 16aCm’w* — 16Cm’*w* + 24aCmw*

+24BCma* + 3968m3w® — 5952m2w® + 2112mw® — 64w®

11)
42m — 1)’ 2 2 2 2 2 (
B= - bC” + ¢C* + C°d — 18aC —30pC

3(aC? — 2:Cma? — 8Cdmae? + 120ym2e*) ( ¢ anme pCma

—60yCma?* + 5040m2w*).
aC+ (—4bma? — 6cma? — 12dmae?) C* + (72am’w* + 120pm’w* + 360ym’w*) C
—20160mw® = 0.

* Sawada-Kotera-Ito Eq. (2):

C = 2ma*
A = 4w (63B° + 252B’ma?® — 126B*®” + 336Bm’w* — 336Bmaw* + 84Bw* »
1
+152m3w® — 228m?w® 4 108mw® — 160°).
u(x,t) =B+ Ccnz(\/Ex - At) + &glm).
4
B= —g(Zm —1)w?, C = 4ma’.
12
P ?8(1% — ) (m +1)(2m — 1o (13)
u(x,t) = B+ Cen?®(Vx — i) + &ylm).
* Lax Eq. (3):
C =2ma’.

A= 4w (35B® + 140B’mw’ — 70B*w® + 196Bm*w* — 196Bma* + 56Bw* + 96m>w® (14)
—144m’0® + 80maw® — 160°)u(x,t) = B + 2mwcn? (Vo (x — t) + E|m).

* Kaup-Kuperschmidt Eq. (4):

B:—%(Zm—l)wz,C:—.

A= % (m —2)(m +1)(2m — 1)’ (15)

u(x,t) = B+ 2mocn’® (Vo (x — &) + &|m).

* Letting m = 1in Eqs. (2)-(4), we obtain solitonic solutions.
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3. Soliton solutions
3.1 First family

Let

252

A=—""_ w=Fk.
a+p+y

c:—%(a+ﬂ+y)(a—5(ﬂ+4y))—b—d.

424 1 b
d=—""__ 1 - - 107) + =
a+ﬂ+y+y8m+ﬁ+ww 56 + ﬂ+3

We make the transformation
u = Adyxlog(1+ exp(kx —wt))
to obtain the soliton solution

126k*
(a+p+7) (1+ cosh (kx—k7t_§))'

Usoliton (x; t) =

For a graphical illustration, see Figure 2.
We are interested in the existence of two soliton solutions. Let

252
a+p+y

01 = kax — kjt and 0, = kyx — kit

u(x,t) = Oxx log(1+ exp 61 + exp 6, + pexp(6; + 67)).

Making the choices
t 10
q g
0.020 F—
0.015 |
0.010
u(x, t)o.00s
0.000_
50
Figure 2.

Soliton solution u(x,t) = S04 5 to the Sawada-Kotera-Ito equation with k = 0.2.

1+ cosh (0.0000128t—0.2x’
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B2 (B -3 — 9 +317°)

a =

49(8 — 57)°
BB =68y + 150y —23/°)
7(8 - 57)°
Bt =98y + 258%% — 33py° + 76*
7(8 —5r)°
(B -5y + 287 +177°)
78— 5r)°
P-4 +137
B B—5r
. Pk — ko) (k* — kikez + ko?)’
(ks + extkz)z (2ﬁ2k12k22 = 2rkika (k12 + dhiky + k22) +7 (k14 + 41’k + 9ki’ky” + 4eiks® + k24)) .
(20)
We obtain

3 2
Uy + audu, + bu;, + cutttioe + du” Uz, + a Uz, + Pisy + ylbse + Uz =

(B =7) (B —2r) (B = 3r)R(k1, k2, 61, 60,).

We conclude that the two soliton solutions exist for the parameter values in
Eq. (20) under the condition

B—r)(B—2r)(B—3y)=0. (21)

We obtained the following result:
Theorem. The following families of KdV7 admit one and two soliton solutions for
any p. The two soliton solutions have the form

252

Un_soliton (X, ) = maxx log (1+ exp(61) + exp(6;) +pexp(61+6,)), (22)
being

01 = kyx — kit, 0, = kyx — kit (23)
¢ First set:

s 15t 15 5p
4=z b =0c=5gnd="5a=5.5=p,
 (ky — k2)? (ke — sk + k22)2 y—p (24)

(1 + ko)’ (s + rkes + k2?)

KdVv7:

u +£ 3utu +E Zunu +E 2uu +§ Uy U3y + PUUay + pUtts, + Uz7x = 0
t 784]) x 28p xW2x 5619 3x zp 2wU3x T PU U4y T PUU5, 7x —
(25)
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4 u(x, 1)

Figure 3.
Two soliton solution for p = 1.

An illustration with p = 1 is shown in Figure 3. The solution is

14'80.352855t+0.5x + 27.4460.278313t+0.7x + 2.5267660'2705:+1'2x + 0.0975793e0.262688t+1.7x + 0.0497854@0'18814&+1'9x

ulxt) = (£0172521+0.5x | £0.0979793+07x | (), 0035561¢0-09016681+1.2x t (0.1803341)?
(26)
e Second set:
A et
b =2 Ad="L  a=3p,p=2p,
RV A 7= i=
(27)

(k1 — kz)z(kl2 — kiky + kzz)
(k1 + kz)z(k12 + kiky + kzz) ’

y=p
Kdv7:

4 1 6 2
+ mp%ﬁux + ?pzufc + ?pzuuxu;x + ?p2u2u3x + 3pu,y Uz + 2pu sy + pusts, + Uz =0

(28)
¢ Third set:
P 10p*  5p?
:%’ :%,C:%,d:%’azsp’ﬂ:3p
(ky + k2)*’
KdV7:

5 5 10 5
ur + 9—8p3u3ux + ﬁpzui + 7p2uuxu2x + ﬁpzuzu&c + Spuy sy + 3pu thay + putts, +uz, =0
(30)
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Now, our aim is to find three soliton solutions for the parameter values in Eq. (20).
Assume the ansatz

u(x,t) = %@cx log (1 + :1 nj + 1s;s 3Pi,j’7i’7j + P1,2,3’71’72’73> ) (31)
where
1 = exp (ij — k}t) forj =1,2,3. (32)
We have:

Uy + andu, + hui + CUtt g + Au® Uz, + A Unllze + Pllxthax + yUlls, + U7y =

98(B — Sy)krka (k1 + ka) (k3 — vp1 ks — 67°kak3 + 2Brkaks — 4r’kaps ok
+2p%k5kT + 18y k3ks — 12Bykoky — 8y kopy okt — A% kak; — 26y°k3k; + 20Byksk;
—107°k3p1 ok + 2%k ks + 18y% k5 kT — 12f3vk5k — 8y*k5py ks — 6y%kok1 + 2fvkok:
*472]@3/71,2161 + kS — J’Zkgﬂl,z)/ r*z122

+98(8 — 5y)kaks (k1 + ks) (kS — v°pysky — 61°ksky + 2Brksks — 477kspy sk
12073k + 18y°k3ky — 12pyk3k; — 8y*k3p sk — 4p*k3k; — 26y%k3ks + 208yk3k; —
107%k3p, sk3 + 25°k3k; + 18y%k3k: — 12Bykik; — 8ykip, ki — 6y°k3k1 + 2Byk3ks
— 47k p ks + VRS — RSP 3) /7 7z

+98(B — 57)kaks(ka + k3) (r*ks — v’ pysks — 61%ksks + 2Byksks — 4y*ksp, 5k5
+2p%k5k5 + 18y°k3ks — 12pyksks — 8y*k3p, sks — 4B%k3ks — 26y%k3ks + 20pyk3k;
—10p%k3p, 3k + 28%k5ks + 18y ksks — 12fyksks — 8y*kiyps ks — 6y k3ka + 2BykSk:
—472k§/)2,3k2 + VZkg - 72kg02,3)/}’42223 +h.ot

Equating to zero the coefficients of 212,, 2123, and 2,23 and solving the resulting
system of algebraic equations we obtain

(k1 — ko) (267k3k + 2Pykoks — 8Bykiks + 2fykaker + yPk; — 4y*koks + 9y%k3ks — 4y%k3ks + 12k )

P2 P2 (ks + ko) (k2 + ks +K2)°

. (k1 — k3) (25%k3k: + 2Brksk; — 8Pykiks + 2Bykikes + vy — 4y22k3ki + ksl — 477Kk + 7R
) 72 (k1 + ka)z(ki + kski + k§)

s = (k2 — kes)* (257k5J3 + 2Prkses — 8Prkis + 2pykka + k3 — 4r°ksk3 + Op°k3k; — 4rkka +17°k3)

72 (ks + k3 (2 + keskes + k2)*
(33)

Next, we equate to zero the coefficient of 212,23 in order to obtain the value for
p123- It is given as follows.
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e Forp=y:

P123 = P1/Q;, where

P = p*(ka — k1)’ (ky — 3)* (k3 — k1) (e + ko + ke3)

(k3k} + kiky® — 2kokikel® + 3kakiky® — 2kesksky + koki® + k3ki> — koksky® + kak3k)”

k3l — kyksks® + 2k5kit + 2kSklt — 3kokoklt + 6kokikyt — Skakakyt + 6lksk3k)!

—3kdkski® 4 2eik1® + 2ebel’ — akerkSkl0 — 10kK3R1C — 18k3kskl’ — 18k5kIR1® — 10k3k2K1°
—4lSkesk:® + 3kSk] + 3kSk] — Gkakik] — ThokSky — 38k3k3k; — 26k3k3k; — 38k3k3k; — TkSk3k]
—6kksks + 3kokS + 3kgkd — skl — 7R3k — 35k3KSkS — 58k3kkS — 58Kk IS — 35kSKIKS
~Tkk5KS — 3kSkskS 4 2050k + 2k k] — 6kokSk] — ThikSk] — 41kedk5k; — 60k3kSk] — 99k>k3k]
—60kSkik] — 4Vesk3k] — ThkSk3k] — 6kgksk] 4 2es kS + 23 kS — 4keae kS — kRS — 35k3KSKS
—60k5k5ks — 92ek5kS — 92k5k3ks — 60kIk5kS — 35kSk3KS — TRk3kS — 430kskS + k3R] + k3k;
—3kok3 k] — 103K — 38k3kIkS — 58kykSks — 99kSkGks — 92kSkSk — 99k k3 — 58kSkik]
—38k5k3k; — 10k, k3kS — 3ky sk + ky ks + k3 ks — koklky + 6koks ke — 18k3k3 k] — 26k5k3k;
—58k3kSky — 60kSkik: — 60k kSks — 58kSk3kT — 26k5kskt — 18k kiky + 6k kAks — ki ksky
2k I + 2kykS — SkakS — 18k3k3 kS — 38k3k3ks — 35kSkik — 41kdkiks — 35KkSkSkS
—38kyk3ks — 18k, k3ks — Sky'k3ks + ky'k3ks — 2y ksks + 3ksky ks + kikyks + 6k3ky' ks
—10k3k30k2 — ThSk3kd — TkikSk? — TkSkik? — ThkykSkl — 10k, kak? + 6k ik + ks kak:

13k 5kE — 2k ey — keykiky — 3k3k5 Ty — 4kSki kg — 6kJkIks — 3kSkSks — 6kikiks — 4k3CkSk:
—3ky ks — kykgks — 2ky ks + Kkl + ko + 2k + 2k’ + 3k5k; + 3kgk + 2%k

+ 2R + kK5 + k3 kS,

and

2 2
Q1 = 1 (k1 + ko) (ke + kaky + k3) " (k1 + Je3)*(ky + k3) (1 + ko + k3 ) (k3 + keskey + k3)
2

(k3 + kesky + k3)
(ef + 2leaked + 2lesked + 3kdks + 3k3ks + Skoksks + 23k + 2k3ky + Skokiky + Skoksk:
+h5 + k3 + 2kok3 + 3kk; + 2krks).

e For = 2y:
P1,2,3 = PZ/st where
Py = y*(ky — k1) (k] — kaker + k3) (kT + kaker + k3) (ko — k3)* (ks — k1) ey + Ky + ke3)?
(ks — keskey + k3) (5 + ksky + k3) (k5 — keska + k3) (k5 + sk + k3) (kf + 2okl + 2keske;
+3k3k? + 3k2k? + Skoksk? + 2edky + 23y + Skokdly + Skaksks + k3 + kg + 2kok3 + 3kak: + 2k3ks),

and
Q, = r* (k1 + ko) (2 + keakey + R2)” (kg + k3)?(ky + ke3)2 (kg + oo + es)? (k2 + sk + k2)
(3 + lesks + 13)”

(e} + 2koke + 23k + 3loky + 3k3k: 4 Skokski + 2kdkey + 2k3ky + Skok3ky + Skaksky + k5 + k3
+2kok3 + 3k3k3 + 2kdks).

e For g = 3y:
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P13 = P3/Q3, where

Py =y (ky — k1)* (k] — koky + k3) (T + keoky + k3) (ka — k3)* (k3 — k) (k1 + ko + k3)* (k2 — ksks + k3)

(ki + esker + &3)

(k5 — ksl + k3) (k3 + ksky + k3) (k7 -+ 2koks + 2kesks + 3kdks + 3k3k: + Skoksky + 2kl -+ 2k3ky + Skokik:
+5k3ksky + k3 + k3 + 2koks + 3ok + 2edks),

and

Qs = 1y + ka)2 (3 + Feakey + k2) " (r -+ ke3) (o + kes)2(ler -+ ko + ez )2 (k2 + sy + k2) (k2 + keskea + k2)°
(ke + 2ok + sk + 3k3ks + 3k3ks + Skoksks + 2kl + 2k + Skok3ky + Skaksks + k5 + k3
+2koke + 3k3k; + 2k3ks).

We have three soliton solutions only when f = 2y or = 3y. Thus, the KdV7 has

two soliton solutions for the parameter values in Eq. (20), but it does not have three
soliton solutions for y = S.

3.2 Second family

Let

5(7a+58—6y)(a+B+7)
7938 '
1

b= latf+y)(36a+35 +107).

1
c= —6—3(a+ﬁ+}’)(37a+35ﬁ+15y).

(34)

d a+p+y)(a+ 56+ 30y).

= 16!

We make the transformation

126

u(x,t) = m

O log(1 + exp(kx — k't) + pexp(2kex — 2k’t)) (35)

to obtain the soliton solution

504k 1k
Usoliton (x’ t) = 5 fOI‘p =

L (36)
(a+p+7) (Zek7t + ekx)

4

A cnoidal wave solution is

Ucnoidal (x> t) =p+

(Q-2mtvm>—m+1)p ,( Jgla+p+7)
— NN sy XA bm ),

(37)
where
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1
= ~500094m3 |
—630pm>p’q — 3780ym’p?q — 2331am’pq® — 2205pm>pq* — 2016ym>pq* + 2am>q>
+28m3q® — 124ym3q> + 63am’p?q + 315pm*p*q + 1890ym’*p*q + 2331am’pq® + 2205pm*pq*
+2016ym?*pq* — 3am?q® — 3pm*q® + 186ym*q® — 126ympq* — 3amgq® — 3pmq>
—66ymq® + 2aq° + 284° + 219°)).

(a + B +7)7(2205am>p? + 1575pm>p> — 1890ym>p® — 126am’p’q

3.3 Third family
Let

4 8(a + f + 7)*(4a — 10 + 25y7)
o 453789

= 55 (=160 + 220 — 23ay + 386> + 318y — 7/%).

. _ 8 +2ap +107ay — 65 + 93py + 99’
B 1029 '
2(20% + 4ap — 3lay + 2p* — 318y — 33y?)

d=- 1029 '

b
(38)

We make the transformation

441

max,x log(1+ exp(kx — k7t) + p exp (2kx — 2k7t)) (39)

u(x,t) =

to obtain the soliton solution

3528k (166"t o K 1 4)

1
usoliton(x; t) - 3 fOI‘p = E . (40)
(@a+p+7) (16€k7t—kx + ohx—kt + 16)
A cnoidal wave solution is
3mp o [w(a+p+y)
= - (x — 41
where

4(m — 2)(m + 1)p* (48 — 508 — 99)(a+ S +7)"

A=— .
3176523(2m — 1)

(42)

Let us investigate the existence of two soliton solutions in the ansatz form

441
2a+p+7)
plexp (01 +26,) + exp (201 + 6,)] + xexp (01 + 6;) + p* exp (261 + 263)),
where 0; = kix — kit and 0, = kyx — k;t.

1
u(x,t) = Oxx log(1+ exp6; + expb; + i [exp(261) + exp(26,)]+
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We have three soliton solutions for the following choices:

A 5 9 Tr
*m, h7174’ 677, d*7,a*6}’> ﬂ*z- (43)
Wt — k2P + 2k (k1 = ka)” (k5 — ok +k3) (44)

- , p=
2ker + ka)? (k3 + kaker + k3) 16(ke1 + k2)* (k3 + kaker + k)
Letting y = 42 gives the Kaup-Kuperschmidt seventh-order equation:

ur +2016u%u, + 6300 + 2268uusy + 504u” usy + 252us s + 147uttay + 42usis, + Uz, = 0.
(45)

3.4 Three soliton solutions
The three soliton solutions have the form
2
U3 soliton (X, ) = 1/20x, log | 1+ Z Pijs exp (i (kax — k7t) +j(kox — kyt) +1(ksx — k3t)) |,
iyj,1=0

(46)

where p; ;) = 1when i +j +1 = 1. The parameter values are obtained as follows.

First, we set
kyx — kit = log(z1), kax — kjt = log(z2) and kax — k3t = log(z3) (47)

to get

ur +2016u°u, + 630u’ + 2268u 1y + 504u” uz,
+252un 3y + 147U thay + 42usy + U7, = P(21,22,23).
Next, we solve the equation

F v

——¥(21,22,23) |2 —z=5,—0 = O (48)
azldz] alz3 ( 1 2 3)|Z1 22=23

for p; ;. The parameter values are:

1 B 25 — kiks + 2k - (ky — ke3)* (k5 — kska + k3)
P002 =16 PO T ey )2 + sk + R3) O 1600 + ) (I3 + ek 1 K3)

L1 ek (B —kska k) k] kK + 2k
PR T8O T 160y k) 0y haka + ) 2l k) b+ ks 45

(k= ks)z(ki — k3ky + k%) _ 2kt — k22 4 25 (k= kz)z(ki — kakq + k%)
102 =16 ey + k2 (k2 + kesker +82) 770 T 2y + o) (R + kakey 1 2) 70 T 16ks + ko) (K2 + oy + K2)
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U S (ky — k3)* (kT — k3ks + k3) (ke — k) (T — keaker + k3)
2001670 T 16 ey 4 k3)2 (k2 + kskr +R2) P 16k + o) (B2 + heoky + k2)

(ks — k3)* (k2 — kskey + k2)
256(ky + k3)* (k2 + ksky + k2)°

02,2 =

1
4(ky + ka)? (T + koky + k3) (ky + k3)? (kg + k3)? (I3 + ksky + k3) (k3 + kska + k3)

P11 =
X 4l kS + 4kl — 2hdkakd — 2kSkS — 2kSkS — kdkskS — kyk3kS + 4kSky + 4kSky
—kdkSk — 6kskik; — kSkiks — 2k3kSks — kykSks — kSkyks — 2kSkiks + 4kyks — 2kSkS + 4kSks).

- (2K} — ok + 2k3 ) (lr — k3 ) (ky — k3)* (ki — ksks + k3) (k3 — kska + k3)
M 30k + ko) (B2 + ok + k2) ey + k3) (ky + k)2 (k2 + kesky + k2) (k2 + kska + k2)

- (k1 — ko) (kS — koky + k3) (ky — k3) (k5 — ksky + k3) (2] — k3ky + 2k3)
YT 30k + ko) (B2 + ok + k2) ey + k3) (ky + k)2 (k2 + kesky + k2) (k2 + kska + k2)

(ke — k) (k3 — keoky + k3 ) (ke — k3)* (ko — ke3)* (kf — keskey + k3) (k3 — ksk + k%)2

P122 = .
256k + k)2 (2 + leakes + K2) (k1 + k)2 (ko + ks)* (2 + sk + &2) (k2 + ksks + &2)°
2
(ke — k3)* (k3 — kesky + k3)
P2,02 = 4712 N2
256(k1 + k3)" (ki + kskq + k3)
- (ky — ko)* (k3 — ok +k3) (er — ke3)? (k3 — kesker + k3) (2 — K3k + 2k3)
PYT 30k + ko) (2 + ok + k2) (s + k3)2 (kg + k)2 (k2 + kesky + k2) (k2 + kska + k2)
(ks — ka)2 (2 — Teakey + R2) (ey — k)* (ke — 3)2 (k3 — keskes + 2)° (k2 — keskes + k2)
P12 = 2/12 2 4 2(1,2 2\2/12 2\
256(k1 + k7) (k1 + koky + kz)(k1 +k3) (kg + k3) (k1 + ksky + k3) (k2 + k3k, + k3)
2
(1 — ko)* (Iey — keale + k3)
P22,0 = 47,2 N2
256(ky + k3) (k1 + kokq + k2>
472 2 2 2 2
(y — ko) (k2 — ok + k2)" (x — ke3)2(key — ks )2 (k2 — sk + k2) (k2 — ksks + k2)
P221 = 2 2)2 2 2\ (1,2 2\
256(fey + ko) * (] + eak1 + 3) " (o1 + ke3)* (ky + k3)” (kT + ksky + k3) (k5 + kska + k3)
P ko) (2 — kakey + k2)” (e — es) ey — kes)* (k2 — sy + k2)” (2 — keskes + K2)°
2,22 —

4096k + ko) (k2 + eaker + k2) ey + k3)* (ko + lez)* (k2 + kesles + k2)” (k2 + kskes + 2)°

3.5 Four soliton solutions

The four soliton solutions have the form u(x,?) = 1/20, logf (x,t), where
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2 2 2 2 i1 1y 431
{f(x’t) = Zz’lzo21’2:021‘3:0Zi4:OBi1izi3i4zlllzlzzzg3ZlAf’ (49)

Zj = exp (ij - ij) for anyj

The 76 coefficients B;,;,;,;, are given by

g1 g ks —kiks+ 2k
0002 = 72> Boont 2ks +k4)2(k§ +heaks + ki) .
(ks — ka)* (k3 — leaks + k3) 1
Boonz =

16(ks + ka) (k2 + keakes + &2) 00 16

(ks — kea)? (k3 — keakes + k3)

Boox = .
O T 16k + k) (k2 + kakes + 2)
(ks — ka)* (k3 — kakes + 13)°
Boox = e N
256(]63 + k4) (k3 + kaks + k4)
205 — kks + 2k
Bo1o1 = T3 TR
2(k2 + k4) (kz + kgky + k4)
B (ky — k) (k5 — keaky + k)
M T 16(ky + a)? (k2 + kaky + k2)
25 — ks + 2k
Boio = 55 s
2(ka + k3)” (k5 + ksky + k3)

Bon = [4k3kS + akikS — 232k — 2kSkS — 2UeSkS — k3kikS
—kk3ks + 4kSks 4 4kSky — k3kSks — 6kjkiks

—kSkiky — 2kakSks — k3kShks — kSkiks — 2kSkik)

Akl — 25k + 4k3k]/[4(ky + ke3)* (k5 + ksky + k3) (ko + kea)?
(ks + ka)* (I3 + kaky + k3) (k3 + kaks + k3)].

(2k5 — k35 + 2k3) (ko — kea)* (ks — ka) (k5 — kaky + k3) (k3 — kaks + k&3

B =

™ Sl (4 ok D)+ e ka8 Rk )+ e )
o (e =k (B~ kska D)

20 T 16(ky + kes) (K2 + esks + K2)
Bogy — (k2 = k)" (ks — keaka + K3) (ks — k)" (ks — keks + k3) (2k; — ki) + 2k%)

32(ky + k3 ) (k3 + ksky + k3) (ky + kea)? (k3 + ka)? (k5 + kaky + k3) (k3 + kaks + k3)
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s (ky — k3)2 (k2 — ksky + K2) (ky — k) (ks — ka)* (k2 — kaky + k2) (k2 — kaks + 2)°
0122 —
256(ks + k3)? (k2 + ksks + k2) (kea + ka)? (ks + ea)* (2 + kaky + 2) (3 + keales + k2)°

g -1t g _ (k- k)’ (k3 — kaka + k3)
P00 T16” T T 16k + k) (k2 + ks + K2)

B (ky — ka)* (k2 — kakey + 2) (ky — k3)* (k3 — ksky + k3)
0202 =

5>D0210 =

256(ky + ka)* (B2 + kakey + 2) 16(ky + k3)? (k3 + kaky + k3)

(ky — k3)* (k5 — kesky + k3) (ky — ks (k3 — kaky + k3) (2k5 — ki3 + 2k}

Booain = .
32(ky + k3)? (k5 + ksky + k3) (ko + ka) (k3 + ka)” (k3 + kaky + k3) (k3 + kakes + &3)

B (ky — k3 (2 — Teskea + 2 (s — kea)* 3 — kea)? (k3 — lealen + k2)° (k3 — kegks + k2)
0212 = .
256(ky + k3)? (k2 + sk + k2) (ky + k) (k3 + kea)? (k3 + kaky + k2)” (2 + kaks + k3)

(R ks)t (R - kska + K3
256(ky + k3)* (k2 + ksky + k2)’

Boxo

(ko —a) (k2 — keskes + 2)” (ks — ka2 (s — kea)? (k2 — keakes + K2) (2 — keaks + k2)

By = .
256k + k) * (k2 + ks + k2) (ks + lea) (k3 + k) (2 + kakes + 2) (2 + leakes + k2)

Bo (ky — k) (I3 — lesky + k2) (kg — ka)* (ks — kea)* (I3 — keakey + k2)° (k2 — keakes + k2)°

4096(ky + k) (2 + kesky + 12) (ko + kea)* (k3 + ka)* (k2 + kakey + K2)° (3 + keales + 2)°

2y — ki + 2k; _ (ky—ka)’ (k] — kskr +K3)
»P1002 — .
(1 + kea)? (k] + feaky + k5 16(kr + k4)” (kT + kaks + k3)

Bioo1 =
2

ey — Ik + 2k
(k1 + ke3)? (K3 + kesky + k3)

Broig =
1010 P

Bion = [4k3kS + 4kjkd — 20e3kikS — 2k5kS — 2UeSkS — k3kikS
—ke3k3RS + 4kt + 4kSk; — k3kSky — Gljkiky — kikiky — 2k3kSk
—le3kSk? — kSkik? — 20eSk2k2 + 4kikS — 2UeSkS + 4k3k]]
J[4(ky + k3)* (kT + ksky + k3) (k1 + ka)? (3 + ka)?
(k3 + keaky + k3) (k3 + kaks + k).
(2k} — k3k2 + 2k3) ey — ka)* (ks — ka)* (k3 — kales + k3) (k3 — kakes + k3)

B =
T 32y + ks (2 + ks + k2) (ky + fea) (s + ea)2 (k3 + leakes + K3 (2 + kaks + k2)
(ky — k3)* (3 — keskey + k3)
Bio20 = >3 >
16(k1 + k3)” (ki + ksks + k3)
A k3)? (k3 — ksky + k3) (ks — kea)? (k3 — kaks + k5 ) (2] — kikT + 2k)

32(ky + k3)” (kT + kskey + k3) (1 + ka)* (3 + k4 ) (S + kaky + k3) (k3 + kaks + k3)
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Bigys — (y — k3)? (k2 — kegley + k2) (k1 — k) (s — kea)* (2 — keakey + 3) (k2 — kakes + k2’

256k -+ k3)2 (k2 + ksky + k2) (k1 + kea)2 (k3 + fea)* (2 + kakes + k%) (k2 + kakes + k2)°
2% — kokd + 2k;

(k1 + ke2)? (I3 + keokey + k3)

Bio1 = [4k35kS + 4kikS — 2Ueak2kS — 2kSkS — 2kSkS — kKRS — kikikS

+4kSk] + 4kSk; — kokSky — 6kskiky — kSkaky — 2k3kSk: — kykSk: —

k3kyks — 2kSkiks + dksk — 2keSk + 4kSky] /[4(k1 + k) (k] + kaky + k3)

(1 + ka) (ko + ka)? (I3 + keaky + k3) (k5 + kaks + k5)].

(2kf — ok + 2k5) (k1 — ka)* (ky — ks) (k3 — kaky + k3 ) (k3 — kaka + k3)
32(ky + k) (I3 + koker + k3) (1 + k4 ) (ky + ka)? (kT + kaky + k3) (k3 + kaka + k3)
(2k — Kok + 2k5) (ke — k3) (ko — ke3)* (k3 — kesky + k3) (k5 — kska + k3)
32(k1 + k2)” (k3 + leaks + k3) (1 + ke3) (o + k3)” (5 + kesker + k3) (k3 + sk + k3)

B = (k1 — k3)*(ky — k3)? (kf — ksky + k3) (k3 — ksky + k3) (k3 — ka)* (k3 — kaks + k3)
(4k3kS + 4l — k2l — eSS — 2k’ — k2ktkS — kRS + 4kSkt + 4kSki+
—kakSkey — 6kskik; — kSkiks — 2kkSkE — kykShkl — kSkik: — 2kSkak: + 4ksks — 2k5kS + 4kSky)
/164 (k1 + ko) (k7 + kakes + k3) (k1 + k3)* (ka + k3)? (ke + esky + k3) (k5 + sk + k3) (ke + k4)?
(ky + kea)* (k3 + kea)* (k2 + kaker + k3) (3 + kaky + k3) (k3 + kaks + k3)].
Bun = (2% — k3k: + 23 ) (k1 — k3)? (ka — k3 ) (kT — ksky + k3) (k3 — kaka + k3) (k1 — k)
(ky — ka) (3 — kea)* (2 — keakey + k3) (k3 — kakey + k2) (K2 — kegs + k2)’
/15121 + k2) (k3 + kakey -+ 13) (k1 + k3)* (ko + ke3)? (3 + ksky + k3) (k5 + kska + k3)
(kn + ka)2(la + lea)2 (k3 + lea)* (k2 + kakes + k2) (2 + keaker + k2) (I + ks + k2)°].

(ke — k2)* (k3 — keoker + k3)
T 16(ky + ko) (k2 + keokey + k2

(ky — ko)* (k3 — kaker + k3) (ky — ka)? (k3 — kaks + k3) (2ey — ke + 2k5)
32(ky + k) (I + kol + &3) (k1 + kea)* (ka + ka)* (RS + kakey + k3 ) (k5 + kaks + &)
(ke — ko)X (K2 — Jeoker + B2) (ky — fea)? (ka — ea)* (K2 — keaky + 2) (K2 — kaky + K2)’
256k -+ ka)2 (k2 + kaker + k2) (fex + ka)2 (ke + ka)* (k2 + kakes + 2) (k3 + keaks + 2)’

(ke — ka)* (k3 — kaky + k3) (ko — k3)* (k3 — kska + k3) (2eg — k3k3 + 2k3)

32(ky + k) (k3 + koker + &3) (k1 + ke3) (ko + k3 )? (k5 + ksky + k3) (k3 + ksk + &3)

B =
1100 2

B2 =

Bi1ao =

B1200

Bio1 =

B1202

Biig =

Bin = (k1 — ka)* (k3 — koky + k5) (ko — k3)? (k3 — sk + k3) (ky — ka)? (k3 — kaks + k)
(4k;‘k§ + 4kkS — e keS — 2kSkS — kSRS — k3kikd — k3RS + 4kSk; + 4kSk; — kikSk;
—6k3kiks — kSkik; — skl — kykSki — kSkik: — 2eSkik: + k3 — 2kSkS + 4k§k3)
164k + ka)? (2 + keakey + k3) (ex + k3)? (ke + k3)? (kT + ksky + k3) (k5 + sk + &3)

(ke + k) (kg + k) (ks + k) (k] + kaker + k3) (k3 + kaky + k3) (k3 + kaks + 3]
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Bty = [(ky — ka)? (kS — kok +K3) (ks — k) (k3 — kaky + k3) (265 — K3k + 2k3)

(s — s — ) (3 — Jea)? (k5 — eales + ) (3 — ek + K3)” (k3 — leales + )]

/1512(k1 + k) (3 + kokey + k3) (k1 + k3 ) (ko + k3)* (3 + kesker + k3) (5 + sk + k3)

ey + ka)2(la + Fea)* (s + kea)? (k2 + ks + k2) (k2 + keakey + 2)” (2 + ks + k2)].

(e — ko)’ (k3 — ok + k3) (k1 — ks)* (k2 — ks)* (k3 — ks + 3) (k3 — kska + k2)*
256(k1 + ka)? (k2 + kakes + 12) (s + ks)2(kea + s)* (2 + sy + k2) (k2 + ksks + k2)*

Bixo

Biont = [(ky — ko) (k2 — keakes + k2) (ky — ke3)2(lea — ez )* (k2 — kesler + k2) (k2 — keskey + k2)”
(ko — ) (s — ka2 (2 — kaks + R2) (B2 — kaks + R2) (201 — 2R3 + %))
/1512(k1 + k2 (k3 + ks + k3) (ks + k) (ka + k) (2 -+ eskes + k3) (k3 + keska + k2)°
(Rey + kea)? (Rey + kea)? (k3 + ka)? (k3 + kakey + k3) (I3 + keake + k3 ) (k3 + keakes + k).
Bram = (k1 — ko)2 (2 — keokes + k2) (e — es) (ks — kes)* (2 — leskes + 2) (2 — keskes + k2)°
(y — )2 (ks — k) (s — lea)* (2 — lealer + k2) (2 — lealer + k2)° (2 — keakes + k2)°
/14096 (k1 + ko) (I3 + kaks + k2) (e + k3) (ks + ks)* (2 + kesks + k2) (I3 + kesks + k2)°
(ky + ) (ks + k) (s + ko) (2 + lealer + k2) (2 + lealey + k2)° (k2 + kakes + k2)°].

B000 = ==, B2001 = (s — k4)2 (k% — kak +k‘21) ,Baooz = (s — k4)4(k% — kaky + ki)z .
16 16(ky + ka)” (k5 + kaky + k3) 256(ky + ka)* (k2 + keaky + k2)°
By — 1= k) gki — kky + k3) '
16(key + k3)? (k5 + ksky + k3)
By — 1= k3)? (kS — kesky + k3) (k1 — ka)” (k] — kaker + k3) (25 — k33 + 2k5)

32(ky + k3)* (k3 + sy + k3) (k1 + ks ) (3 + ka) (k3 + kaky + k) (k5 + kaks +k5)
(y — ke3)2 (k2 — kesler + k2) (r — o) (s — ka)2 (2 — leakes + 2)” (3 — keales + k2)
256 (k1 + k)2 (k3 + kesks + k2) (s + ) (ks + a)? (k3 + leaker + k2)° (k2 + heaks + k2)
(y — kes)* (3 — sk + k2)°
256k + k) (k2 + ksk + k2)”
Booyr — (ky — le3)* (k] — keskr + kg)z(k —ka)* (ks — ka)* (kS — kaky + k3) (k3 — kaks + k3) _
256 (k1 + ks)* (2 + esker + k2)° (g + k)2 (k3 + ka) (2 + kaky + k2) (k3 + kegks + k2)

By =

oy — kes)* (2 — leskey + k2)" (kr — lea)* (s — ka)* (k2 — lealer + K2)° (k2 — kegks + k2)”
4096(ky + k3)* (k2 + ksky + k2)” (ke + es)* (k3 Fha)* (k2 + kakes + k2)” (k2 + keales + k2)°
(k1 — ke2)? (k3 — leaker + k3)
16(ky + k2)? (5 + koky + k3)

B100 =

(k1 — ko)? (kg — kaky + k3 (y — k) (k3 — keakey + k3) (25 — k3k5 + 2k

Boi01 = .
32(ky + ka)” (kT + kokey + k3) (1 + k) (ka + k) (S + kakey + k3) (k3 + kaks + 3)

(o1 — ko) (k2 — leokes + K2) (g — ka)* (ky — lea)? (k2 — lealer + 2)° (k2 — keaks + k2)
256k + ko) (k2 + okes + k2) (g + k) (ky + kea)2 (k3 + leakes +k3) (k2 + gy + k2)

B2 =

(k1 — ka)” (k — eakes + k3) (k1 — ks)” (k — keskn + k3) (23 — K3k + 2k3)

Boiio = .
32(ky + k2)” (kT + kakey + k3) (k1 + k3)* (ka + k3)* (I3 + ksky + k3) (k3 + kska + &3)
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Boiy = [(k1 — k) (k] — koky + k3) (1 — ke3)? (k] — ksky + k3) (1 — kea)?
(k3 — lealey + k3 (4k5ks + 4ikeS — 2eskikes — 2UeSks — 2kSks — kikiks
—legk3RS + 4kSks + 4kSks — kakSks — Gkikiks — kakaks — 2k3kSk
—le3kSks — kSkiks — 2kSkiks + 4k3ks — 2kSkS + 4kSk)]

/(64 (k1 + k2)? (k3 + kakey + k3) (1 + k3)* (ky + k3)* (k5 + keskr + k3)

(3 + kesky + k3) (ke + k) (ky + ks ) (k3 + ka)? (k3 + kaky + k3)

(k3 + kaky + k3) (k3 + keaks + k3 ).

Boia = (k1 — ka)* (k3 — kaky + k3) (k1 — k3 ) (k] — ksky + k3)

(2 — k23 + 2k2) (g — Fea)* (ly — kea)? (3 — )2 (2 — keakey + k2)°

(k3 — leaks + k3) (k3 — kaks + k3)]/[512(ks + ko) (k3 + kaks + k3) (k1 + k3)?
(ky + k3)? (R + kesker + k3) (5 + sk + k3) (k1 + ka)* (ko + ka) (k3 + ka)®
(2 + leakey + 12)" (2 + leakes + k2) (2 + keaks + k2)].

(ke — ko)? (kT — koky + k3) (k1 — ke3)* (ko — ke3 ) (k3 — kesker + k%)z(kﬁ — ksks + k3)
256k + k)2 (k2 + keaker + k2) (ky + k3) (ko + k3)2 (k2 + leskey + 2)° (k2 + sk + &2)

Boipo =

Boun = [(k1 — ka)? (k2 — keakey + k2) (ey — les)* (g — es)? (2 — keskey + k2)°
(k3 — keska + k3) (kr — ka)* (ks — ka)” (k] — aks + k3) (k3 — kaks + &3)
(2K — ik + 2k3)]/[512(k1 + k2)? (k7 + kok + K3) (k1 + k3)* (ks + k3)?
(k5 + kesky + k§)2 (k3 + kesky + 13) (k1 + ks ) (ky + ka)? (k3 + kg)?
(s + leakes + k3) (k5 + kakes + k3) (k35 + kaks + k5)].
Boin = [(k1 — ka)? (k2 — kakey + k2) (g — ke3)* ey — k)2 (2 — kesky + k2)°
(k2 — kegkey + k2) (kg — kea)* (ky — ) (ks — ka) (K2 — Reakey + K3)°
(k2 — kaley + k2) (k2 — kakes + k2)°]/[4096 (k1 + k2)? (2 + keoker + k2) (ks + k3)*
(ko + k3)2 (k2 + sk + 12)° (k2 + kskes + 12) (ks + kea)* (ka + ka2 (k3 + k)
(k2 + kaker + 2)” (2 + keaky + K2 (2 + keaks + &2)7].

(ky — ko) (k2 — kokey + K2)°
Byoo = v TV
256(k1 + kz) (kl + koky + kz)

(e — ko)t (k2 — kokey + R2) (kr — k)2 (s — k)2 (K2 — leaky + 2) (K2 — kaks + k2)
=
256(ky + ko) * (k2 + keaky + 12)” (g + ka2 (ka + ka) (2 + lealey + k2) (2 + kaky + k2)
(er — ko) (k2 — kokey + k2)” (lex — ka)* ey — lea) (k2 — kakes + 2)” (2 — keakes + k2)°
02 =
4096 (k1 + ko)* (I + kakes + k2)* (k1 + kea) (ks + lea)* (k2 + kealer + k%) (2 + kakes + 2)°
(oy — ko) (3 — Teakey + k2) " (ky — ke3)2(ky — kes)2 (2 — kg + k2) (I3 — sk + &2)
Bamo = 4,2 2,2 2 2/12 2\ (1,2 2
256(k1 + k2)” (kg + kaks + k3) (k1 + k3)" (k2 + k3 )" (kY + k3kq + k3) (k3 + k3ka + k3)
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Bonr = [(k1 — ko) (2 — keakes + k2)” (k1 — k)2 (kg — k3)? (k2 — sk + 2)
(k3 — lesky + k3) (ke — ka)* (ky — ka)* (k2 — keaky +k3) (k3 — keaks + K3)
(2§ — 32 + 2e)]/[512(k1 + ka)* (k3 + keaker + K3)” (ks + kes)? (kz + es)?
(3 + kesker + k3) (5 + sk + k3) (k1 + ka)? (ko + ea)* (3 + kea)?
(3 + Feaker + k5 (k5 + kaka + k3) (k3 + keaks + k)]
By = [(k1 — k2)4(k% — kokq + ki)z(kl —ke3)? (s — k3)2(k€ — kski + k%)
(k2 — Tegkey + k2) (kg — kea)* (kg — kea)* (3 — kea)? (2 — leakey + K3)"
(k2 — leakes + k2)° (k2 — ks + 121/ [4096(k1 + ko)* (k3 + kakes + 2)° (feg + 3)?
(ky + k3)? (kS + ksky + k3) (k3 + ksky + k3) (k1 + ka)* (ka + ka)* (3 + kea)?
(k2 + keaker + k2) (K2 + gy +k2)" (k2 + kaks + k2)].

(e — ko) (k2 — oy + 12)° (g — ke3)* (ko — o) (k2 — eskey + K2)° (k2 — keskey + k2)
4096 (k1 + ka)* (2 + kokes + k2)° (1 + k) (ks + ke3)* (k3 + keskes + R2)” (2 + sk + k2)”
Boan = [(kx — ka)* (3 — keokes + k2)" (ky — kes)* (ky — ks)* (k2 — kesks + k2)

(k2 — sy + k2)" (k1 — leq)2 (ks — k) (s — ka2 (k2 — leakey + k3

(k2 — leaky + 13) (k2 — kaks + k2)]/[4096 (k1 + ko) * (3 + kol + k2)° (g + fe3)*
(ky + k3)* (k2 + kskey + k2)” (2 + esky + k2) " (ey + k)2 (ka + kea) (3 + s )?

(kT + kaky + k3) (k5 + kaky + k3 ) (k3 + kakes + k3]

Boyo =

Bon = (ks — ka)* (2 — ok + k3)” (e — es)* (k2 — es)* (k2 — eshes + K2)

(k2 — kskey + k2)” (o1 — kea)* (la — kea)* (ks — kea)* (2 — eakey + 2)°

(k2 — kakes + 2)” (2 — keaks + k2)7)/ 165536 (ks + ko) * (2 + keakes + k2)" (k1 + k3
(ky + ) (2 + kesker + k2)” (2 + lesky + k2) " (ke + ka)* ez + fea)* (3 + o)

(k2 + kakes + k2)” (2 + Reakey + k2 (2 + keakes + k2)°].

For a graphical illustration, see Figure 4.

3.6 N-soliton solutions

The N-soliton solutions have the form u(x,t) = 1/20,, logf (x,t), where

N .
2
f(X, Z‘) = Zi1,i2,"')iN:OB1112 N]l;ll 2;] 4

(50)
zj = exp (ij - ij) for anyj

In order to find the unknown coefficients B ;,...;,, we define

W(21,22, -+, 2N) = U + 2016u3u, + 630u,3c + 2268u, 12, + 504u” us,
+252us 3y + 147U thgy + 42uths, + U7y
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Figure 4.
Four soliton solution:{k, = 0.489591,k, = 0.68479,k; = 0.104676,k, = 0.733527 }.

The number B is obtained from the equation

BRI
ai1+i2+-~-+iN

— _¥(0,0,0,..,0)=0 (51)
0z} 023 -0z} ( )

4. Bilinearization
Let us consider the case whend = ¢/2 — b. The family to be considered is

Uy + auPu, + bud + cuntetiy, + (¢/2 — b)u? uze + Quoctse + Putax + yusts, + 7, = 0.
(52)

Let
u(x,t) = Adyf (x,1). (53)

Plugging the ansatz in Eq. (53) into Eq. (52) and integrating once with respect to x,
taking a zero integration constant gives

3 (8 (4Af 1 (Ab + 58 — 57)D*c(f - f) + A (A(y = B)f e D (F ) + 2 (D% - )+

Du(f -f))) + (Ala — p+7) = 140)D*(f - f)? + (A(B +7) — 112)D*(f - )D°(f - f))

+D%(f - f)* (aA® + 6A(12a + 4Ab — 2Ac + 38 + 77y) — 20160)

+4f’ D2 (f - f)’D*(f -f)(A%(c — 2b) — 3A(4a + ff + 19y) + 3360))

—48AFFY . (4Ab +15(y — P))D*(f -f) — 24AFFf ... (3(4Ab — 154 + 157)D*(f - f)*

102 (B — 1)D < (f - f)) + BAF 2 (2 (B — 1) (F (20 e — 2F serne + D% (F )

+HISD(f - f)D*(f - f)) + 9(BAb +20(y — B))D(f -£)°) + 4AF* (B — 7 )f v (—4* (20F %, + DOu(f -f))
8 rree — 45D%(f -f)? + 307D (f - )DL - ) + 288AF(B — 1) of cue

+96Af7(Ab +12(y — B))D*(f -f) + 48Af>(3(2Ab — 154 + 157) D2 (f -f)*

+52(8 — V)D*<(f -f)) + 288A(y — B)f; = 0.
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The choices

3 2
{a?,ﬂy,aﬁybmﬁy (54)

o784’ ’ 28 }

will give the following bilinear form

Du(f-f) +D3(f -f) = 0 (55)
This corresponds to the KdV7 (A =2,y = 28)

Uy + 420u3u, + 42005, + 210u> Uz + 70Utz + 28uyth gy + 28unts, + u7, = 0.
(56)

This KdV7 admits one and two soliton solutions. However, it does not have three
solitons solutions despite the fact that it admits bilinear form.
One soliton solution: u(x,t) = 20, log(1 + exp (kyx — kit)) -
Two soliton solution:
u(x,t) = 20y Iog(l + exp (klx - kit) + exp (kzx - kgt) +Apexp (klx - kit) exp (kzx - k;t)),
where

(ky — ka2 (2 — keokes + K2)°

A= ko) (% + oy + K2)° &7
Breather: u(x,t) = 20y log(pe®*~* + qe* ¥ + rsin(xx — ut)), where
3= e(<7KE R = 217K+ 3567,
§= K(—K6 + 7k® — 352" + 21K4k2). 59)

B K2r? (31(2 — k2)2
42q (k2 — 3k%)"

Let us consider a more general than Eq. (56) KdV7

Uy + 42003u, + 420Uttty + 2100 Uiy + 70Uty + 28Untherr

F28Uth oxxxe + Ui + OpUuL, + 4Squ2ux + 15qu sy + pu,,, + 15quu . + quus, +uz = 0.

XXX

This KdV7 admits the bilinear form

Dy, (f -f) +pDi(f -f) +4Di(f -f) + Di(f -f) = 0. (59)
The one soliton solutions are
2R (K g p) e

(ek3t(k4+k2q+p) n ekx) 5

u(x,t) =
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The two soliton solutions are
u(x,t) = Oy log(1+ exp(kix —wit) + exp(kax — wot) + A1 exp(kix — wit) exp(kax — wat)),
where wy = kip + kiq + k], w; = k3p + kyq + kj, and

(k1 — ky)* (Skiq — Skakiq + Skaq + 7k — 14kl + 21kdk; — 14k3ks + 7k + 3p)

A = .
Y7 (g + ko) (Sk2q + Skakiq + Sk3q + 7kt + 14kak> + 21k3k2 + 14k3ky + 7k + 3p)
(60)
On the other hand, direct calculations show that the KdV7
3a—56)(28 +7)* 1
e+ BN 4 2 ()28 -+ 7102+ g (2 1) (20— 3+ By

1
+ 2_8 (2ﬂ Jr y) (a - zﬂ Jr zy)uzuxxx + auxxuxxx Jr ﬂuxuxxxx Jr yuuxxxxx + Mxxxxxxx = 0

may be written in the following Hirota’s bilinear form [4]:

. -f)+ 0D g - 2= Dy gy =T pi

14(6a—84—7r),
B, €8=0
Di(f-f) = (f-g) =0

u(x,t) = Adgy logf(x,t), A

168
y+28°

(61)

The seventh-order Kaup-Kuperschmidt Eq. (4) belongs to this class (A = 1/2).
Using the obtained bilinear form, we may obtain all the results we presented in
previous sections (for the special case d = ¢/2 — b).

5. Forced KdV7
The forced KdV7 is written as

uy + andu, + bufc + cUuttytog + Au® U, + QUoxtiay + Plxlhax + Ylse + U7y =f(t). (62)

The forced Sawada-Kotera-Ito Eq. (2) and the forced Lax Eq. (3) admit the exact
solution.

uy + 252u3u, + 63u33c + 378uttay + 126U Uz + 63Unctzy + 42uUxthay + 2lUtisg + U7, =f(1).

Exact solution:

u(x,t) = B+ 2sech®(x — A(t)) + F(t), (63)

157



Nonlinear Systems and Matrix Analysis — Recent Advances in Theory and Applications

where
At) = 4](6333 + 189B%F(t) + 126B? + 189BF(t)? + 252BF(t) + 84B + 63F(¢)* + 126F(t)* + 84F(t) + 16) dt.
(64)
and
F(t) = Jf(t). (65)
Uy + 14003u, + 70uf; + 280uytoy + 70U Uz, + 70uUstize + 42ustiay + 14uns, + uzx = 0.

¢ Exact solution:

u(x,t) = B+ 2sech®(x — A(t)) + F(t), (66)
where
3 2 2 2
Ao =4 J 35B3 + 105B2F (¢) +37OB + 102513F(t) +140BF (1) | )
+56B + 35F(¢)° + 70F (t)” + 56F(t) + 16
and
F(t) = Jf(t). (68)
For other parameter values, we obtained the following result:
Ifa+p+y+#0and
1
a= 6—3d(a +p+7)
b= % (—az + 4ap — Nay + 5% — 56y — 10y* + 126d) (69)
1
c=5 (Say + 5y + 5y — 42d)
then the forced KdV7 in Eq. (2) admits the exact solution
B 252 )
u(x,t) —B+a+ﬂ+}/sech (x — At)) + F(2), (70)
where
1 J ( F(t)(3aB’d + 3pBd + 3B*yd + 504Bd + 1008y) ) .
—— t
63 )\ +F(t)2(3aBd + 3Bd + 3Byd + 252d) + F(t)*(ad + fd + yd)

+ %t(aB% + pB%d + B*yd + 252B%d + 1008By + 4032),
Fi = [fe

See also [5].
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Chapter 9

Numerical Solutions of
Nonlinear Schrodinger Equation:
An Application Example of
Nonlinear Analysis

Peter Y.P. Chen

Abstract

The nonlinear Schrédinger equation is used to show how numerical methods can
be used to solve mathematical problems present in nonlinear analysis. The Lanzos-
Chevbychev Pseudospectral method is shown to be effective, flexible, and economical
to meet various demands in practical applications of mathematical simulations using
nonlinear differential equations. The electromagnetic wave propagation through an
inhomogeneous, anisotropic, and complex space is used as an example to show how
successful mathematical modeling could be used to explain the complex phenomenon
of astronomical redshift that is the central issue in the widely debated Hubble tension.

Keywords: application of nonlinear analysis, numerical solution methods, nonlinear
Schrédinger equation, pseudospectral method, electromagnetic wave propagation in
space, astronomical redshift

1. Introduction

In recent times, nonlinear analysis has been increasingly used in science and
technology. Many advanced and innovative applications in those fields include
nonlinear effects in their design and development. To be useful to real-world prob-
lems, those mathematical models need to be solved by methods developed in
nonlinear analysis. Out of many possible mathematical methods, some are developed
specifically for nonlinear differential equations (NDEs). This chapter will concentrate
on a specific method for the solutions of second order NDEs. As a specific example,
nonlinear Schrédinger equation (NLSE) is being chosen. The emphasis is to show how
such numerical methods can be used to investigate how electromagnetic waves prop-
agate under various realistic physical conditions in space.

For many years researchers have had extensive interest in how to solve NDEs
analytically. But, because of the nonlinear nature, little success has been achieved in
solving them directly. That is, starting from NDE itself and finding the solutions
analytically in a forward direction. However, for methods starting from some assumed
solutions and working out how to satisfy the NDE analytically as an inverse problem,
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there are many successes. Some of these inverse examples include the inverse
differential and integral methods such as, for wave propagation [1], the G/G
expansion method [2] and its various variants [3-5], and inverse scattering methods
for antenna design [6]. Generally, as an inverse problem, there is no limit to how
many solutions can be found because there are an infinite number of choices for the
set of system parameters that define the chosen base functions. However, the need to
have a matching background medium is a notable limitation [7]. From the nature of
those solutions, it could be concluded that this inverse approach is more suitable for
qualitative analysis that the performance of a design, or the characteristics of a system
could be assessed qualitatively. For quantitative assessment, the direct approach is a
better choice, because the solutions are obtained by satisfying not just the NDE but
also the initial/boundary conditions.

Numerical solutions of NDEs start with a scheme to discretize the problem into a
set of simultaneous nonlinear algebraic equations. Linear algebraic algorithms are then
used to solve those equations with an iterative scheme to cater for the nonlinear terms.
For transient problems, especially when a long history involving a large set of equa-
tions is needed, the computational efficiency of the chosen method becomes impor-
tant. As many different models under different prescribed conditions may be
encountered, the flexibility of the method is also a factor for consideration.

In Section 2 of this chapter, we describe the Lanczos-Chevbychev Pseudospectral
(LCPS) method [8, 9] that we have used to solve many different NDEs. The LCPS
method uses an economized power series and has been shown to perform as well as
similar orthogonal eigenfunction series expansion methods such as the Chebyshev
Pseudospectral method. However, the advantage of using LCPS is that an ordinary
power series is involved that would be the simplest and the most economical comput-
ing method. The details of the LCPS method are given in this section together with
some application examples.

In Section 3, we apply NLSE to electromagnetic wave propagation through space
[10, 11], together with two simple examples. We show in Section 4 that long distance,
and other characteristic nature of space such as anisotropy, inhomogeneity, and grav-
itational effect, can be effectively included. How to calibrate our findings with empir-
ical data is also described there. In Section 5, we discuss the usefulness and limitations
of mathematical simulations based on examples we have solved. The check list
includes items such as the appropriateness of the model, the variable ranges within
which the model is applicable, and the implication of any assumptions made. To be
realistic, we make use of our findings on astronomical redshift and compare them to
popularly accepted theories in that the debate on Hubble tension is receiving consid-
erable attention [12, 13]. We present our conclusions in Section 6.

2. Numerical solution methods for second order nonlinear partial
differential equations
As higher order can be reduced to second order by introducing additional second
order equations, we can restrict ourselves to consider only a second order differential
equation in a dispersive field.

2.1 Nonlinear partial differential equations

Consider a time-dependent two-dimensional boundary problem
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iu, = D(x, t)Vzu + F(x,t,u)u, (1)
au'(x,t) +Bu (x,t) +y=0,atx = xy, 2)

and,
u(x,0) = u,(x), (3)

where D is the dispersion coefficient, and the nonlinear F is a spatial and
time-dependent potential. &, f, and y are coefficients associated with the boundary
conditions.

As an example, we use a single mode solution #(X,Y,z) in a two-dimensional
Cartesian system with spatial variables, X and Y, coefficients D; and D, and a
nonlinear potential F, such that

T )

(4)
For numerical reasons, if a function is not smooth, such as in the case solitons, it is
desirable to adopt a multidomain approach. The given rectangular two-dimensional

domain of interest is divided into M x N subdomains. The affine transformation is
used to scale each subdomain to [—1, 1]%, in the new coordinates {x,y},

Q::Qi’j, i=1,2,..,M; j:]-’z! s N. (5)
In the subdomains, the associated surfaces are
S = QY[-1,y),8) = @V LyIn@V[-1y], i=1,2, ..M -1,
SMi = QMill,y], j=1,2, ..,N, ©6)
i,0 _ il _ ij __ Oy i +1 _ — —
S0 = @, 1,8V = @[, U@ Uy, ~1,j = 1,2, .., N — 1,
S;,N _ Ql,N[x,l]’ i=1,2,..,M.

Boundary conditions specified in Eqgs. (2) and (3) apply only on those surfaces that
form part of the boundary. For inter-subdomain surfaces, the specified conditions are
continuities of both the function and its derivative. These also apply to the four corner
points.

Based on the Lanczos-Chebushev Pseudospectral (LCS) method [8, 9], the
function u* in each subdomain Q", is be represented by the tensor product of two
truncated power series,

L ..
u (x,y,t) = Z up, (0)x"y! 7
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1=0 k=2 ,
L K g

(“yy) (x x,),t) = Z L(1-1) u(t)x"y' 2 (8)
1=2 k=0 Lk

Based on the approach proposed by Lanczos [14, 15], the discretization of the
problem is done by collocation at specially chosen gride points. For example, the grid
points for the x variable over the interval [—1,1] in each subdomain are the K - 1 roots
of a Chebyshev function, where K is the highest order of the power series used,

. (2k +1)m\ , B
X, = — cos {42“( 2 ,k=0,1, .., K -2, 9)
and for the y variable,
B 2A+Dr ,
Yy = COS{Z(L_Z) ,0=0,1,..,L —2. (10)

For each subdomain, the function »” (x,p,t) as well as its derivatives are substituted
into the governing differential equation at the grid points, (x;, y),1 =0, 1,..., L-2and
k=0,1,..,K-2togive (L - 1) x (K-1) ODEs. On the four surfaces of each subdomain,
boundary or interfacial continuity condition is specified on grid points: [x = £1, y = +1],
[(x1,1=0,1..L-2), (y=%1)],and [(x = £1), (), k = 0, 1 ... K-2)] to give a further
(2L + 2k + 4) ODEs. The assemble of ODEs for the system is in the form,

iAU, — LU — Hy(U,t) = 0. (11)

In Eq. (11), the unknown coefficients Uisa [Mx Nx (K +1) x (L + 1)]. A and L,
are linear matrices, Hj is a nonlinear vector. But their row dimensions are larger than
the length of U. We use a discrete least square method to rectify this problem by
multiplying Eq. (11) with A™, the matrix transpose of A. The resultant matrix
equations are well-posed to be solve by a linear equation solver with an iterative
procedure to carter for the nonlinear term.

For a one-dimensional problem, N = 1and L = 0, and in the m™ subdomain,

1,1 1.2 2 2
U = {Ud, ULy oo Uy Uy UT5 ooy Uy ooy U, Ul ...,uK} (12)
The matrix A in Eq. (11) consists of
A, _
Ay
A
A= Mo (13)
S11 Si2
S1 S Su3
Sm-1m-2 Sm-1m-1 Sm-1Mm
L Smm-1 Smm
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0 .1 M
xl xl . . . xl
0 .1 M
x2 x2 . . . x2
where 4,, = | - . . ,m=1,2, ..M,
0 .1 M
Xg Xk XK

and A,, is independent of m. There are M rows of Ss and each Sisa2 x (K + 1)
matrix:

S . — (-1)° (=1 - - o (=D (=X
me 0 1 2 . . (I( _ 1) K ’
S, = 0 ’ :
12 = [O -1 _2(_1)1 - —(K—l)(—l)Kﬂ —K(—l)KI:|’
and

SM,M—l = Ll) ! 1 1}

SM,M _ [(—1)0 (_1)1 L. (_1)K—1 (_1)1( ] )
1 1 A | 1

Depending on the actual field equation involved, L; and H; can be constructed
accordingly. Details of how the elements of each matrix could be determined are given
in Ref. [8].

2.2 Solution by the real time evolution (RTE) method

This well-known method has been used to solve an initial-boundary problem [16]
that evolves into a stationary and periodic solution. This method could be modified to
cover cases where the solutions are periodical in time. In this special application, U is
the same at the beginning and at the end of a period. To march from the beginning of a
period to the end, we have chosen the implicit Crank-Nicholson stepwise formulation
that is unconditionally stable. For Eq. (11),

AUt —um) —% [Li(U™ 4+ U™) + Hy (U™, 00) + Hi(U™, ™)), (15)

where the superscript m refers to the time step number. With the superscript »
refers to the iteration number and the symbol ‘-’ means an integration, step, the
iterative approach would be

UWHrl,O _ Um;then Um+1,rfl N Um+1,r. (16)
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It should be noted that the iteration approach is needed due to the nonlinear H;
terms. Since A and L are both linear, only one inversion is required for all the
iterative and time steps:

-1
ymtLrl |:iA — %Llil <|:ZA + %L1:| u” —l—% [Hl(Um+1,r’tm+1) + Hl(Um,tm)]>.
(17)

But starting with any pulse energy, a periodic solution may not exist. For this
reason, we have developed a version of RTE method that, as shown later, the iteration
will converge to an exactly periodic (EP) solution.

For a single mode problem, a term exp (iu ty) could be factored out from the
solution of Eq. (17) at the position of the pulse peak. At a given time, ¢ = £,

u(x, Vs tg) = exp(ipto)ﬁ(x, Vs to). (18)
Generally, if T is the period,
u(x,y,to + T) = explip(to + T)|a(x,y,t0 + T), (19)
and, for u(x,y,t) to be periodic,
uT =2z (20)
and
a(x,y,to) = a(x,y,to + T). (21)

As Eq. (17) can only be used to solve for exactly the number of coefficients in the
series expansion, the pulse energy needs to be specified so that 4 will be unique. For
this reason, we have designed a set of iterative algorithms based on the pulse energy
being of a specific value. To achieve this purpose, the pulse energy at the end of each
iterative step is adjusted to the specific energy, eventually, the procedures lead to the
correct p and the converged pulse shape and pulse energy. The rate of convergence
could be improved, if we also use the well-used averaging method [17] for u:

i. Start with

ﬁo(x,y, 0) =u(x,y,0), — uo(x,y, T). (22)

ii. Find 4, T from 4™ (x,,y,,T), then
W"(x,y,T) = exp[—in, Tlu" (x,y, T),
w(r,y) = 2" (6,9, T) + " (5,3, 0], @3)
W (x,9,0) = w" ) VE/ (lwl - lwl) = u" (e, T),

where the superscript m is the iteration number and E is the specified energy. The
symbol ‘-’ indicates that, in each iteration, »™(x,y,T) is obtained from u™ (x,y,0)
using Eq. (17).
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An obvious pre-condition is that the initial input used must be close to the con-
verged solution. There are no set rules, but a Gaussian pulse is a good start. If error in
the input has a negative imaginary component in its eigenvalue, the iteration will not
converge due to modulation instability.

2.3 Numerical example of bimodal wave propagation

The governing equation for the spatiotemporal evolution of complex wave
u(z, x, ) and v(z, x, ) in a planar waveguide is known [18] as

1 1
iu; + iuxx +§D1u” +vux =0,
(24)

2i (v +cvy ) +}vxx + }Dzvﬁ —qv —i-}uz =0.
2 2 2

where c is the group velocity mismatch parameter and ¢ the phase mismatch
constant. These equations are the same in form to those dealt with previously but with
t and y replaced by z and 7 respectively.

The system where v has twice the frequency of # is known as second harmonic
generation. Traveling waves would split into a fundamental and a second harmonic
modes. For such a system, the solution principles used in the RTE method remain the
same with both # and v involved [19]:

0" (x,,2) = exp(—iuz)u™(x,,2), 25)
" (x,7,2) = exp(—2iug)v" (x,7,2).

As there are two pulse energies E, and E, now involved, we have three choices for
assigning energy: The total energy E = E, + E,, or E, and E,, by itself.

A system that supports the copropagating of two pulses of arbitrary frequencies
may support also a continuously varying spectrum. For this reason, errors in the
initial guess could grow with distance traveled. It is important to design an algorithm
to ensure that the iterative procedures will lead only to the ground state solutions
for u. It is noted that, at convergence, v will also assume equilibrium state. To
implement these ideas into our algorithms, we set y, = 1 for u. At the end of each
iterative cycle, we re-scale # so that u could be forced to converge to 1. For v we do not
preset y, and just let it assume its own value at convergence. The constraint we use
for v is a specified energy ratio R = E,/E,. Again, E, is not given a value at the
beginning, but it will assume a value once a converged E,, is found. The algorithms are
as follows:

i. Start with

ﬁo(x,y,O) =u(x,y,0), — uo(x,y,T),
(26)
ﬁo(x,y, 0) =v(x,9,0), — v (e, 9, T).

ii. Find p, T from u™(x,, y,, T) and p, T from v™ (x,, y,, T), then
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ﬁm(x’yaT) = eXP[ lﬂu ] ( X5 )’
ﬁm(x’y’T) = eXP[ lﬂv ] ( X5 )’

wu(,y) = 21" (6,3, T) + " (5,3, 0],

1 ~Mm m
w(x,y) = 50" (%9, T) +v"(x,9,0)],
1 (27)
Ty = )
Hy
W (x,y,0) = ruuu(y) —  w"(x,y,T),

ry =

\/R<|um+1< .2, 0)1 " 1,3, 0))
(ove. )T Tove. )

m+1( m+1(

x,9,T).

%,9,0) = ryov(xy) —

150

Figure 1.
Stationary solutions found for Eq. (24) with E = 400, D2 = — 0.2 and q = 2. (symmetry in the central x-plane was
used with 4 x 2 subdomains and K = L = 8. The initial guesses for u and v were Gaussian pulses in both directions).
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Figure 2.
Stable propagation of the stationary solutions shown in Figure 1.
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We have applied the LCPS method to Eq. (24) and obtain a set of ODEs that was
solved with RTE method to give a set of stationary solutions. The complicated wave-
forms found could be seen from Figure 1. We then propagate this set of solutions over
a distance z = 10. The propagation histories show that there is no change in the pulses
amplitude and energy as can be seen from the plots in Figure 2.

3. Electromagnetic wave propagation through space

Numerical procedures described in the previous sections have been modified and
used to study the propagation characteristics of electromagnetic waves in the form of
bright, dark, and anti-dark solitons [10, 11, 20]. The steps needed are to be described
below.

3.1 Stable periodic (SP) soliton solutions of NLSE

For a plane wave the governing NLSE and boundary conditions are
Uy — %D(x)un —dylulfu = 0,u(0,x) = u(L,x) = 0, (28)

where u is the slow varying envelope of the axial electric field, D(x) and y repre-
sent the dispersion coefficient and self-phase modulation parameters, respectively. x
and ¢ are the spatial propagation distance and temporal local time, respectively. L is
the width of the numerical window used for . For application to space, x is a very
large number while D and y are very small. To eliminate possible numerical compli-
cations associated with those numbers, scaling factors, x, and ¢,, are introduced so that

x*F=—,t" =—, (29)
X, t
then, together with
. DXO'S .
D =G, u' = (rx0)*° u, (30)
Eq. (28) becomes dimensionless,
Uy — %D(x)un — iJul’u = 0, (31)

where the superscript * has been omitted for simplicity.

To solve Eq. (31) numerically, consider pulse propagation as a transient problem
along the spatial distance, x, the discretization is one dimensional and only at the
temporal local time domain ¢. Using M subdivisions

Q=0 i=12,..,M. (32)

For each subdivision, the numerical window of length L is mapped into an interval
varying from - 1 to +1, and an economized power series is used:
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u(t,x) = Zuk(x)tk (33)

Applying the LCPS method to Eq. (31) at the collocation points, to, t;.. tx, to each
subdomain leads to a set of ODEs. The assembly of all subdomains involves the series
expansion coefficient as a vector of length (K + 1) x M:

1.1 1.2 2 2 M M MY/
U= UG ULy oo Uy UGy US, oy Uiy ey U UL 5 e U ) (34)

Between two adjacent subdomains, i and i + 1, the continuity conditions are:

. , d . d .
i i+1 . il i
wh=u o= 9
The set of transient ODEs obtained is in the form,
Auy(x) —iLu(x) = iQ(x,u). (36)

Applying the RTE method described in Section 2.2 to the above equation,

i
2

_ids

m+1 m
A(u +u ) >

Lt v um)] = B Q) + Q) G7)
where Ax is the step size, and the superscript m refers to the time step number. To
carter for the nonlinear nature of Eq. (37) that is associating with Q, an iterative
algorithm [9, 10] is used.
The initial input pulse for a bright soliton could be

u(t,0) = p exp[—a(t — 0.5L)*], (38)

where L is the numerical window used for ¢, a a chosen constant to give an input
pulse as close to the SP soliton as possible, and $ an adjusting parameter to give a
specified pulse energy, E,
L
2
E(x) = ( |u(t,x)|2)dt. (39)

As u(t,x) is a truncated soliton pulse, it has been found [9] that to eliminate
residual reflection, the following boundary conditions could be used:

ou
u(t,x) = 10005 —u(t,x) at x = +0.5L. (40)

To find the stable periodical (SP) solution, Eq. (37) is integrated to a selected
distance Z, with the first half using a specified dispersion coefficient of — D, and for
the second half D. For an SP solution, the input pulse must be the same as the output
pulse. We use this fact to design an iterative scheme based on successive halves,

uly ™t =0.5(ul +ul,), (41)

in out

170



Numerical Solutions of Nonlinear Schrodinger Equation: An Application Example...
DOI: http://dx.doi.org/10.5772 /intechopen.1005043

where u;,, and u,,, are the input and output pulse to the dispersion map respec-
tively and the superscript 7 denote the iteration number. It should be noted that
stable periodic solitons are special cases of cyclic solitons in that no phase matching is
needed. For the exact periodic (SP) solutions described in Section 2.2. the input and
output pulses have the same amplitude and phase.

3.2 A numerical example of a SP bright soliton

Using the procedure described in the previous section and a dispersion map with
length Z = 6, Figure 3 shows how the solutions converged to stable and periodic pulses
[10]. The distance, x, shown is the cumulated distance. As the step size is 0.0005, each
iteration generates 12,000 pulses. In the last few iterative cycles, the pulse width is

(e r 03
LS55t
s L =40, M= 20, K = 12, Ax = 0.0005 L 08
= [ D=t01,a=04andE=025 .
ERel L 026 &
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Figure 3.
Iteration convergence for the numerical example.
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Pulse changes when propagating through a medium with -D.
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changing linearly with the distance traveled in both halves of the dispersion map. The
input and output pulses in a dispersion map have the same shape and energy but not
the same phase.

Figure 4 shows changes of the pulse shape as an SP soliton is traveling through a
medium with negative D.

4. Electromagnetic wave propagation in a complex space system

Some of the transmission characteristics of electromagnetic waves through space
have been investigated previously [11, 20]. We shall deal with a space that has other
complex features in the following sections.

4.1 SP solitons with different pulse energies and in a space with random
dispersion coefficient

We have solved for a segment consisting of piecewise continuous dispersion coef-
ficients as given in Table 1 below. The pulse width histories for cases with pulse
energy E = 0.4 and 0.8 found for the above cases are shown in Figure 5. The plots
show that the overall pulse width change for the random dispersion case is the same as
that based on the averaged dispersion. Also in the plots are equations of the trendlines
showing the linear relationship between pulse width and distance traveled when the
average coefficient D is used. Also, for two times increase pulse energy, the deviation
from the average gradient is only +/— 4%.

4.2 A system of multiple SP solitons

The NLQE for multiple solitons is

; J
. 1 i . k 2 i .
W, — ED(x)u’ﬁ — zy{; || }u] =0,j=1,2,.]. (42)

Although a set of equations, equal in number to the number of solitons, are
involved, the same numerical procedures described previously can be used to obtain a
set of SP solitons. For our purpose, however, we only use three well-spaced and

Case 1 Case 2
Section Propagation Dispersion External = Propagation Dispersion External
distance, x coefficient, D  source, u, distance, x coefficient, D  source, u,
1 2 -0.1 0 2 -0.2 0
2 0.5 -0.1 0 0.5 0.2 -0.2
3 1 -0.1 0 1 0.1 0
4 0.5 -0.1 0 0.5 -0.2 0.2
5 2 -0.1 0 2 -0.15 0
Table 1.

Two cases of propagation through different D and u,,.
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Propagation of SP soliton with different pulse energy.

identical pulses. Figure 6 shows how the central pulse has converged to an SP soliton.
The same applies to the other two solitons.

How the pulse shape is changing can be seen in Figure 7. The gradient of pulse
width changes against distance traveled is not sensitive to pulse energy as can be seen
in Figure 8.

4.3 Propagating through space with a CW background
To include a constant CW background, #,, into NLSE, let

Uu=0v+1u,.
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Substituting the above into Eq. (31) to give
vy —%D(x)vn—i|v+uo|2(v+u0) —0. (43)

Using the same numerical procedures as described previously, Eq. (43) could be
solved to give an SP solution. By propagating this SP soliton along the distance x, the
transmission characteristics could be determined. We have solved for two cases with
different system parameters as shown in Table 1. In fact, Case 1 is using a constant D
that is the same as the distance weighted average of D in Case 2. The pulse width and
energy histories are plotted out in Figure 9. It could be seen that #, has little influence
on the overall pulse width change.
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Two cases of propagation through space with CW background.

4.4 Propagation through an amplifying or attenuating space

The NLS equation for electromagnetic waves (solitons) propagation in dimension-
less form and in an attenuating space is

Uy — %D(x)un — ilul’u = S(x), (44)

where S(x) = su for amplification, and S(x) = —su(x) for attenuation and s is a
constant.

To solve the above equation numerical, S must be added to Q in Eq. (36), Asa
numerical example, a system consists of three sections was used. In all sections,

175



Nonlinear Systems and Matrix Analysis — Recent Advances in Theory and Applications

Half pulse width, W
Pulse energy, £

Propagation distance, x

—— Half pulse width ~ ---4--- Pulse energy

Figure 10.
Propagation histories in the present of an external source.

D = —-0.2buts = 0.5, — 0.5 and 0.5, respectively. Solutions are shown in Figure 10.
Features of the solution histories fond are: (a) based on the sign of s, the pulse energy
increases or decreases steadily, and (b) practically, there is no change in the gradient
of the wavelength half width versus x curve.

4.5 Propagation with gravitational deflection

Based on the general relativity theory, the approximate light path deflection angle,
A0 is found to be [21],

4GM

AO )
A

(45)

where d the distance between the light path and the center of the mass, G is the
gravitation constant, M is the mass, and A is the distance between the wave front and
the center of the mass.

Eq. (45) could be used in its dimensionless form,

C
AO = —
o &

; (46)

where € = ;2. Since the event is taking place in space, we have no way of
knowing M and A. But we can still track the gravitational deflection history using
a single arbitrarily chosen parameter C. Using a new rectangular coordinate system
(x1, x2), at a particular step, let ((x1),,, (x2),,) be the position of the mass center and
((x1)3 (x2)1) the wave front; the straight line connecting the wavefront to the center
of the mass is

&= \/ ((x1),, — (x1))" + ((x2),,, — (x2),)". (47)

176



Numerical Solutions of Nonlinear Schrodinger Equation: An Application Example...
DOI: http://dx.doi.org/10.5772 /intechopen.1005043

14
12

1
0.8

0.6

x2-coordinate

0.4

Path direction, degree

0.2

x1-coordinate

® Path, Case 3 Path, Case 4

Direction, Case 3 == == Directicn, Case 4

Figure 11.
Propagation in the present of gravitational deflection.

Then, by specifying a C, the deflection angle A© can be found from Eq. (46). If a
wavefront is propagating along a light path making an angle 6 with the xI-axis.
Integrating along x1 with step Ax, the new wave front position would be [((x1); + Ax)
cos (B + AB)), ((x2)1 + Ax) sin (6 + AB)]. Knowing the new position, Eq. (46) and
Eq. (47) could be used to find £ and AO, and the next wavefront position in the next
integration step.

To implement this deflection scheme, let Z be the length of the propagation
distance to be investigated. Let t(0, 0) be the starting position with the mass M
located along the straight line x1 = 0.5 Z. If ¢ is the angel between the line joining the
wavefront to the center of the mass and the x1-axis, the mass is located at (0.5Z, 0.5Z
tan(¢)). For this example, let the initial ¢ = 20,0 = 0,and Z=3,and D = — 0.2.
Considering two cases, Case 3, C = 0.00005, and Case 4, C = 0.0001, respectively.
After solving for the wavefront histories, the solutions are plotted out in Figure 11. It
can be seen that, at x1 = 0.5 Z where the wavefront is closest to the mass, the
deflection rate is the largest. As expected, a larger C will give a larger deflection.
Without deflection, the wavefront will move along the x1-axis. With deflection, the
wavefront has traveled the same distance along its path, but shorter in term of x1-
coodinate. It should be pointed out x1 and x2 are scaled down to dimensionless
quantities chosen according to local conditions. They would be many orders smaller
than the entire propagation distance.

4.6 Calibrations with physical systems

The coefficients associated with dispersion and self-phase modulation for space
cannot be measured directly. To apply our numerical findings to cosmological red-
shift, calibration with measured data must be used as described in Ref. [10, 19]. If the
starting and ending wavelength is \; and A,, and the half pulse width, W; and W>, and
the dimensionless redshift, z, as defined in astronomy, is given by,
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A —M
M
W, - Wy
W, '

(48)

Also, in astronomy, the measured redshift-distance relation is given by Hubble’s law

z=H,d/c, (49)

where H, is the Hubble constant given in units of km/s/Mpc. The distance between
the light source and an observer, d is in Mpc unit, and ¢ is the speed of light in km/s.
Since Eq. (49) is linear with specific physical dimensions, and our numerical results
are also linear but dimensionless, we could choose any two given points in Eq. (49) for
calibration, so that our results agree with Hubble’s law.

To use real physical data for calibration, we choose, as an example, H, = 70 km/sec/
Mpc for Eq. (49). We also choose the pulse representing the spectral line due to
Lyman-alpha hydrogen that has a wavelength of 121.6 nm., and the corresponding
period is 405 ps. For this example, we choose the linear relationship that we have
found previously for a random medium and shown in Figure 5,

W = 0.9539x + 2.5834, (50)

and the half pulse width at the two calibration points, A atx4 = 2, and B atxg = 6,
from Eq. (50), are W, = 4.9286, and W = 8.3068. Then, the temporal time multiply-
ing scaling factor to convert W into period in picosecond,

405
t, = WA = 82.1734 ps. (51)

Now, the redshift between A and B,

2ap = LBV;AWA — 0.6854. (52)

Using Eq. (49), the distance variable between the source and the observer,

ZAB - 0.6854

djc = o= 70 0009792Mpcs/km (53)
3.08567758 x 10" :
d = 0.009792¢ x 9461 < 10% 9.581 107 light year (54)

Using Eq. (53), the distance scaling factor used to convert x to d/c is

d/c

foxB

f.= 0002448Mpcs/km (55)

5. Discussion

We have demonstrated that numerical methods can be used to solve many
nonlinear field problems. The general mathematical procedures involve the reduction
of the governing differential equations to a set of nonlinear algebraic equations that is
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solved by an iterative approach. Depending on the expected characteristics of the
solutions, numerical algorithms may need to be modified. For an exactly stationary
and periodic traveling wave, the iterative procedures as described in Section 2.2 are
needed. But for the studies of redshift, only a stable and periodic solution in the sense,
that the traveling pulse can reproduce itself anywhere in the whole propagation
history, the iterative procedures needed are less elaborative as described in Section 3.1.
Since the system is a nonlocal problem, the finding of the correct initial pulse is vital
for the investigation of redshift in starlight.

The soliton solutions’ spike-like characteristic needs a very high order of series
approximation. We choose to sub-divide the computational domain into zones so that
a lower order series could be used for each zone. In theory, the tail of a soliton extends
to zero value at infinity. Because we can only use a finite computational window, we
are solving for a truncated soliton. Therefore, the use of boundary condition, Eq. (40),
is important to limit reflection at the boundary. As the pulse width is changing with
distance traveled, the choices for an initial pulse width and the size of the computa-
tional window need careful design. Providing a numerical method can satisfactorily
reproduce a stable and periodic soliton, there is no reason why such a method cannot
also be used.

For mathematical simulation to be an effective tool employed to design,
operate, or control a system, a set of well-proven relationships between the
dependent and independent variables must be used, together with their system
parameters. If not all the parametric data are known, calibration can be carried out to
find the missing ones. However, it is important that the simulation must be used
within a valid range of all parameters. What has been done in Section 4.6 is special
because the linear relationship found in the numerical simulation is the same as the
empirical Hubble law.

In Section 4, we have used numerical examples to show that electromagnetic wave
can travel through sections of space that have different dispersion coefficient, but the
overall wavelength change is equal to that based on the averaged coefficient (See
Section 4.1). This characteristic is because soliton behave both as a wave and a
particle. Similarly, we have shown that the present of other solitons (See Section 4.2),
the present of a CW background (See Section 4.3), or the present of a source, do not
significantly change the rate of wavelength changes against distance traveled. The last
case, Section 4, is about the effect of gravity; the estimate found is approximate. But,
since the space is known to be a virtual empty void even with the present of more than
200 billion galaxies, a journey through the universe would experience gravitational
effect only over a miniscule portion of the total length. We can conclude that gravity
will contribute to redshift but not significantly.

Hubble tension is a typical case where prediction from the standard model of
cosmology is at variant to the experimentally observed empirical Hubble law
[12, 13]. As some of the parameters used in the model were based on small
redshift data available on the time, it not surprising to see that the model predicts
differently when data for larger redshift are available. Based on the cosmological
principle, the model uses a homogeneous and isotropic universe. But the real space
has large clusters and voids even measured in the cosmological scale. Redshift in
starlight traveling through a cluster will be quite different to the one traveling
through a void.

The propagation theory used in our investigation is built on NLSE that ensures a
balance between linear dispersion and nonlinear self-phase modulation. The space is
never assumed as isotropic or homogeneous. By solving the NLSE, the traveling
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histories are constructed according to local conditions encountered. In this approach,
we can accommodate the complex nature of the universe.
6. Conclusion
1.The LCPS method is an effective and economical method to convert a differential
equation into a set of nonlinear algebraic equations that can then be solved

numerically.

2.The propagation theory based on the NLSE predicts redshift in electromagnetic
wave through space can be calibrated to agree with Hubble law.

3.The complex nature of the universe does alter the particle nature of solitons,
allowing changes during their transmission histories to be accumulated.

4.In mathematical simulations, the limits on their ranges of applicability should be
recognized.
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Chapter 10

Perspective Chapter: On Two-Step
Hybrid Numerical-Butterfly
Optimization Technique for System
of Nonlinear Equations in Banach
Space

Mudassir Shams and Bruno Carpentieri

Abstract

In this study, we propose a novel hybrid numerical optimization technique that
combines iterative methods with a butterfly optimization scheme to solve nonlinear
equations. The iterative methods, characterized by cubic convergence order, refine
local solutions, while the butterfly optimization scheme enables global search. Our
approach aims to improve efficiency and robustness by mitigating sensitivity to initial
guesses. We conduct a local convergence analysis in Banach space and estimate con-
vergence radii to guide the selection of initial values. The proposed technique is
evaluated through engineering applications, demonstrating superior performance
compared to classical methods and other optimization schemes such as particle swarm
optimization, sperm swarm optimization, and ant line optimization.

Keywords: nonlinear systems of equations, two-steps hybrid schemes, optimization
numerical methods, butterfly optimization schemes, applications of hybrid methods,
efficiencies of solution methods

1. Introduction
The solution of systems of nonlinear equations represented as

f1(x1,%2, ooy %,) =0
F(x) = fr(x1,x2, ..:.,xn) =0, "
fn(xlaxz, e ,xn) — 0’

is a critical computation required in many scientific disciplines such as physics,
engineering, and biology. Nonlinear equations are essential for capturing intricate
interactions between variables, often beyond the scope of linear models [1-3].
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They are instrumental in describing phenomena such as chaotic systems, fluid
dynamics, and quantum mechanics. Engineers utilize nonlinear models to optimize
designs, simulate complex structures, and analyze control systems. In economics,
nonlinear modeling aids in understanding market dynamics and economic systems
with nonlinear feedback loops [4, 5]. Moreover, nonlinear equations can provide
useful insights into complex biological processes such as population dynamics and
enzyme kinetics [6]. Given that closed-form solutions of Eq. (1) are not always
attainable [7-11], numerical methods serve as indispensable tools for approximating
solutions [12-15]. Several iterative methods have been proposed in the past decades,
including numerous variants of the Newton-Raphson method [16-18], see, for
example, [19-23], decomposition methods [24], homotopy analysis methods [25], and
references therein. Newton’s method for systems of nonlinear equations is generalized
as follows:

oy Fi)

i X — F (Xi)

(=12 ..),F(x) %0, @)

where F:Q CR” — R” is a Frechet-differentiable function. It is widely recognized,
however, that while iterative root-finding methods can be effective, they are not
without limitations [26, 27]. One significant drawback is their sensitivity to initial
guesses [28]. Iterative methods typically require starting points that are sufficiently
close to the actual root for reliable convergence, and often divergence may occur due
to inaccurate initial estimates. One possible strategy that has been explored to enhance
the robustness and efficiency of solving nonlinear equations is to combine iterative
root-finding algorithms with optimization techniques, such as butterfly optimization

[29] (OMO[H' ), particle swarm optimization [30] (OMD’M), sperm swarm optimiza-

tion [31] (OMDM), ant swarm optimization [32] (OMDM), or others. In the first
step, an optimization method is employed to search for an initial guess or an
approximate solution that is close to the true root of (1). Optimization techniques
excel at efficiently exploring the solution space and finding promising candidate
solutions. Once the optimization phase has provided an initial guess or an
approximate solution, a numerical root-finding algorithm is applied to refine the
solution iteratively. This step aims to improve the accuracy and convergence of the
solution obtained from the optimization phase. Iterative root-finding algorithms like
Newton-Raphson, Secant method, or hybrid methods like Brent’s method are com-
monly used for this purpose. This hybrid approach leverages the strengths of both
optimization and root-finding methods to improve convergence properties and
address the limitations of each technique individually. By combining optimization
techniques for global search of the solution space with iterative root-finding algo-
rithms for local refinement, the hybrid approach can potentially overcome the sensi-
tivity to initial guesses and improve the overall efficiency and robustness of the
solution process [33-39].

The effectiveness of the hybrid numerical iterative optimization technique relies
heavily on appropriate parameter tuning to achieve optimal results. Difficulties may
arise in achieving convergence to global minima, particularly in complex scenarios.
Moreover, the suitability of this approach for high-dimensional problems and its
sensitivity to errors in the data are significant considerations to take into account.
Addressing convergence to local minima can pose difficulties in certain contexts. An
accurate local convergence analysis is essential for evaluating the behavior and reli-
ability of iterative root-finding algorithms, including hybrid numerical optimization
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techniques. This analysis provides insights into how these methods perform when an
approximate root of the equation is given, ensuring convergence within a specified
neighborhood of the root [40-42].

In the context of local convergence analysis for numerical schemes used in iterative
root-finding algorithms, two primary approaches are commonly employed [43-46].
The first approach involves utilizing Taylor’s series expansion to generate iterations,
analyzing the behavior of the algorithm near the root of the equation. This method is
applicable to both scalar equations and systems of nonlinear equations, allowing for a
comprehensive understanding of the local convergence properties of the numerical
scheme. Direct application of Taylor’s expansion for local convergence analysis may
have limited applicability in the context of iterative root-finding algorithms. In many
cases, iterative root-finding algorithms are designed to be computationally efficient
and may not explicitly involve higher-order derivatives or rigorous Taylor series
expansions in their implementation. See, for example, Refs. [3, 47, 48] and the refer-
ences therein. Many iterative root-finding algorithms, such as Newton’s method,
primarily rely on the first derivative (or Jacobian matrix for systems of equations) for
updating the solution iteratively. Despite not explicitly involving higher-order deriv-
atives, these methods can still converge effectively in practice, even for nonlinear
equations that may not be highly differentiable. Consider, for example, the function
F:[-1.5,1.5] — R defined as

3 5 4
Fit) = {at log(t) + bt” — ct*,t # 0, 3)

0,t=0,

wherea €R — {0},b,ceR with b + ¢ = 0. Then, x* = 1€Q is a root of F(t) = 0.
However, the third derivative of the function does not exist, since this function is
not continuous at ¢ = 0. Examining the Jacobian matrix offers an alternative
approach to local convergence analysis that can be more robust and applicable in
practical settings [49, 50]. By analyzing the eigenvalues of the Jacobian matrix, this
approach offers valuable information about the stability and local convergence
behavior of the iterative scheme without the need for higher-order derivatives.
Understanding the difference between these two approaches allows for a more thor-
ough evaluation of the local convergence properties of numerical schemes, tailored to
the problem at hand.

In this study, we propose a novel hybrid numerical optimization technique that
combines iterative methods with a butterfly optimization scheme. The iterative
methods, characterized by cubic convergence order [43], are employed for local
refinement, while the butterfly optimization scheme facilitates global search of the
solution space. A local convergence analysis is conducted in Banach space, and con-
vergence radii are estimated to guide the selection of initial values. By leveraging the
strengths of both iterative and optimization techniques, our hybrid approach aims to
overcome the sensitivity to initial guesses inherent in optimization algorithms and
enhance overall efficiency and robustness. We evaluate the proposed numerical
schemes using engineering applications and compare their performance with conven-
tional and optimization schemes, including the butterfly optimization technique, par-
ticle swarm optimization, sperm swarm optimization scheme, and ant line
optimization technique, to illustrate their potential for addressing complex nonlinear
equations in various practical domains. The study concludes with closing remarks and
recommendations for further work.
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2. The MM”" family of iterative nonlinear root-finding methods

In a previous study, we introduced a new family of methods [43] (abbreviated as

MM°") defined by the recurrence relation:

R [1]
x[Z] _ X[l] B F (Xz) F (X; ) (F(Xl)> (4)
7 >
o e (xﬂ) +(2-a)F(x;) ) \F'(x)
where xlm =x; — }lj,((’;é . The main convergence result for the iteration scheme (4)

was obtained using Taylor’s series and is summarized in the theorem below.

Theorem 1: Let x* € Q be a simple root of a sufficiently differentiable function F :
QCR” — R" in an open interval Q. If X, is sufficiently close to x* then the conver-
gence order of the family of iterative method (9) is three and the error equation is
given by [43]:

1
€1 = (2(:5 +5Cs - acg) e +0(e}), 5)

where C,, :%%,m >2.

Our previous research demonstrated that the numerical scheme (4) exhibits
superior stability, consistency, and efficiency compared to established methods
used for solving nonlinear equations, including those proposed by Singh et al. [51],
Huen et al. [52], Amat et al. [53], Chun et al. [54], and Kou et al. [55]. Additionally,
our method is designed to solve systems of nonlinear equations. It outperforms
existing techniques (see, e.g., [56-58]) in terms of computational order of conver-
gence, rate of convergence, minimizing residual error, solution time, and elapsed
CPU time required to generate basins of attraction. Moreover, we extended our
scheme (4) to simultaneous methods, which have proven to be more efficient
than conventional simultaneous techniques in terms of computational efficiency for
locating all roots of nonlinear equations [59]. Unlike some analytical methods, such as
power series expansions, iterative methods for solving nonlinear equations typically
do not have a well-defined radius of convergence. The convergence behavior of
iterative methods can vary depending on various factors such as the initial guess, the
characteristics of the function, and the specific implementation of the method. As a
result, it may be difficult to determine a precise region in which convergence is
guaranteed. In this study, we extend the applicability of these methods and also
address the aforementioned limitations by presenting a new local convergence analy-

sis of the MM®" method (4) in Banach space, which is more rigorous than the local
convergence analysis of the first type presented in Ref. [43]. Banach spaces are
favored over Taylor series expansions for computing local convergence because
Taylor series expansions require functions to be sufficiently smooth and well-behaved
within a small region around the point of interest. In contrast, Banach spaces offer a
more flexible and comprehensive framework. They enable the study of convergence
without requiring strict smoothness, accommodating a broader range of functions,
including those that are only continuous or have limited differentiability. In this
study, the radius of convergence—the distance from the root within which the itera-
tion function can be approximated by a Taylor series expansion—is determined.
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The iterative technique ensures convergence to the root if the initial estimates fall
within this convergence radius.

2.1 Local convergence analysis of the MM®" method in Banach space

To compute convergence radii, we establish the assumptions below. Let wy :
[0,00) — 0, 00) be a continuous function. Assume

i. Equation
wo(t) —1=0, (6)
has a minimal zero &;. Set Iy = [0,2&,). Let w : I — 0, 00) be a continuous

and increasing function. Define function §;onto the interval Iy in the
following way

1
J w(1—0")tdo!

M) =2 @)
ii. Equation
$100) -1, ®)
has a minimal zero d[ll] eI\{0}.
iii. Equation
wo(§:(t)) —1=0, )
has a minimal zero &;. Set
& = min{éo, &} (10)

Letv : I; — 0, o) be a non-decreasing function, where I; = [0, &, ), and define
a function §, on the interval I; as follows:

i i
Jymr@ eyt s
1—wg (l‘) (l’lﬂl(§1(t)) + 2w1(t) + awy (t)

§,(t) = §:(2) - 5 (11)

where
1
0 0

P(t) = le(em (0)) o + |2|J o (1 0, (0)c) ol (12)

iv. Equation
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§:(t)—1=0, (13)

has a minimal zero dgl] e\{0}.
With these assumptions, the following relations are easily proven:

0<wo(t) <1, (14)
0<wo(§;(t)t) <1, (15)
0<wo(§ (1)) <1, (16)

0<§,(t)<1;i =1,2,3. (17)

The radius of convergence d is represented as

AU — min{dﬁl},m —1,2. (18)

Let E( , dm> represent the closure of the open ball B( , dm> with center p and

radius d" > 0. The convergence analysis relies on the following additional assump-
tions, where we assume that the ws are known in advance.

(C1) F: QCR" — R” is a Frechet differentiable operator and there exists x* € Q
such that F(x*) = 0 and F'(x*) ' € £(R", R").

(C2) There exists a continuous and non-decreasing function wg : Ry — R with
w0(0) = 0 such that for eachx € Q :

[F'(x*) 7 (F'(x) = F'(x"))|| <ol (x —x7)]|. (19)

We set Qo = QnB(x*,p), where p = sup{y €Ro : wo(y)<1}.

(C3) There exist continuous and non-decreasing functions ws, w : [0,p) — Ry
with w(0) = w1(0) = 0 such that for each x, xz[ll €Qq:

e (e

IF'(x*)F (%) <@ (flx — x*])-

)’ (20)
(C4) ForallxeQ
|F' (x*)'F' (x)|| < ([ x — x* ). (21)

(C5) Define B (x* s dm) C Q, where the radius 4" is defined by

A — min{d[f],dg“,dgﬂ}. (22)
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(C6) There exists u > d" such that

J1w<,ud[1])dﬂ <1. (23)

0

We show the main theorem of local convergence analysis using the assumptions
and conditions stated in this section. The theorem computes the convergence radius
and guides the selection of initial guess values to assure convergence to the exact root.

Theorem 2 Under the condition (C1)-(C6) for d" = 7, further suppose that xg
€B (x* , dm) — {x*}. The sequence {x;} generated for point x¢ by the iterative

scheme MM®" is well defined, remains in B(x* ,dm) for eachi = 0,1,2, ... and con-

verges to x*. Moreover the following assertions hold:

-

xz[l] - X

<§ (% — x* Dl — x| < [lx; — x* || <", (24)

<§(lx —x"[])llx —x* || < [l - x* || <d", (25)

where the § functions are given previously, and d" is defined by
d" = min{ay!,d}'}. (26)

Furthermore, x* is the only solution of F(x) = 0 given by (C6).
Proof:

Suppose that all conditions hold. Then for x,€B <x* , dm) — {x*}, the sequence
{x;} generated by the MM method is well defined in B (x* ,d [1]) , remains in

B(x* ,dm> for eachi = 0,1,2, ... and converges to x*. Let x EB(X* ,dm) . In view of
the condition (C2),

IF/(x*) 7} (F(x;) — F'(x*))|| <m0 (% — x*[|) < w0 (dm) <1. 27)

The existence of an invertible operator in Banach space implies that F'(x;) " =

/ —1pv
IF" ()™ (x*) | < ey - S

[IF'(x:) (' (%) = F'(x)) | < wo(llxi —x*|)),
|IF' ()" F' ()| + [|F' () "F'(x"))]| < wollx —x*|),
[IF' () F' (x*)) || +1 < wo(||x: — x* 1),
|IF'(x)"F'(x"))|| < wollx —x*|) —

1

and
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n_ o F(xi)
Xi =X F/(Xz') > (28)
xz[ll =x, —F(x) 'F(x),Vi=1,2, ... (29)

Using the Mean Value Theorem (MVT) in integral from,

F(x;) — F(x* o .

we can compute F'(x;)'F(x;) by choosing |F'(x)| <M for all x € D and
HF(X) - F(xlm) H SCHX - xl[-ll H Thus, we can write

1
F(x;) = OF/(X* + 0% (x; — x*))dem(xi —-x*),

Jo[ "(x* + 00 (x — x*))
F(x;) = (% —x"),

—F'(x0)]d0" + rF’(x,-)de[l] (31)
0

JOF/(X,-)*[F/ (x* +00(x; — x*)

—F'(x;)|doY (x; — x*) + (x; — x*)

On the other hand, using F(x;)F'(x;) " in (36) we have

1
V- x* =% —x* — (% —x*) - J Fl(x) '[F (x* + 0% (x; — x*))
1 — &4 i 0

, (32)
—F'(x,))d0Y (x; — x*)

% — x| <

J;F'(xi)*l[ (x + 0 (x; — x* )) - F’(x,-)]delll
‘|F’(x,-)71F’(x*)||><

1 { F(x*) ' F(x*+ ]
J Aol
Lo (% —x*)) — F'(x0)]

X % = x|,

[ —x" < X =i ==,

1
j w(x* + O (x; —x*) — x,-)d@m
0

% —x*| <

1—-@o(llx —x*|) ’

(33)

X|lxi — x|

1
Lw((l 0 1x; — x* [)d6"
= — x| <

x ||lx; —x*
Tl - x

I —x*|| < $a(llx: —x*|[)x0 — x* || < |lx; —x* || <dl,
xl[l] € B(x*,d)and

1
[Om((1 — 61 |jx; — x* [)do"
Sa(l=i —x*|) =+

Sd[l].
1= mo(|lx —x*|)) !
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. . [1]
We now consider the second step of the numerical scheme MM® . We have:

Lyl ( F(x;) - F (xl[l]) ) (F(x,-)>’ (34)

) <2 e

N
XI[Z] e :Xl[ll e ( F(Xz) F (Xz‘ ) ) <F();l))’ (35)

aF' (xlm) + (2 - a)F(x)

- ( F(x;)-F (xlll]>

F(xi)
‘”(€ﬁ+%2—wﬁwn)QWmQ' (36)

Let Ay = aF (Xl[-”) + (2 — a)F'(x;), Then, established the invertibility of Ao, that

is, we have

- el -

1—@o(|lxo —x*|) Ao

im0 o) ((mx,-) -F(x)) (F’<x*>1F/<x*>))

(37)
Ao = aF (xl[ll) F(2-a)F(x), (38)
and we can write
AoF'(x*) ! = (aF’( ”) n (z—oe)F’(x,-))p'(x*)*1
_ (ap' (x,[”) —aF'(x*) + (2 a)F'(x;) + aF’(x*))F’(x* )t
= (a(F( ) (x")) +2F (x;) — alF (x) + F'(x")) ) (x") "
— oF (x (( ( ) )+2F’(x,)F’( ) faF'(x*)*l(F’(x,-)+F’(x*)))F’(x*)*1
AoF (x*) " = amo (|[x = x* |} + 2e(lx — x ) + awo(|x; — %))
(39)
It follows
2 o |41’”1<9”<HX:-fx*H)de”th-fx*\l) (@l —x* ) (o (|« —x"]}))
sl B il B e ( A )

(40)
[ = x| < 8allls = )l — %7 ] < s — x| <df, (41)
[ x| <dl, (42)
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i

x” eB (x* , d[zl]) , (43)

where

— i
Jymr@@pan®y s

1—w (t) awl(§1(t)) + 213’1(1’) + awy (t)

§,(t) = §:(2) — (44)

andt =[x, —x*|. W

The proved local convergence Theorem 2 provides important insights into the
behavior of iterative schemes MM for solving system of nonlinear equations. Under
the assumption that the function is locally Lipschitz continuous and the initial guess is
close enough to the solution, the iterations will converge to the solution within a
specific neighborhood of the initial approximation. In practice, local convergence
analysis in Banach space guides the choice of starting points and guides in the estima-
tion of the rate at which classical and hybrid numerical optimization schemes will
converge to exact solutions of (1), as explained in more detail in the subsequent
sections.

o e e [1+]
3. Butterfly optimization scheme OM"

The Butterfly optimization algorithm (BOA) is a powerful metaheuristic optimi-
zation technique that has demonstrated to be effective in tackling complex optimiza-
tion problems across diverse domains. Inspired by the foraging behavior of butterflies
in nature, BOA simulates the process of scent-based communication among butterflies
to guide the search for optimal solutions. Central to the BOA is the concept of scent
emission and detection, which serves as the primary mechanism for guiding the
movement of butterflies within the solution space. The algorithm operates in three
main stages: initialization, iteration, and optimization.

* Initialization. The initialization stage involves setting up algorithmic parameters
and generating an initial population of candidate solutions. This population is
typically randomly generated within the solution boundaries, ensuring diversity
in the initial set of solutions.

* Iteration. During the iteration phase, butterflies explore the solution space by
emitting and detecting scents. Each butterfly emits a scent that attracts other
butterflies toward it, with the strength of the scent determined by the objective
function value associated with the butterfly’s current position. Butterflies may
also engage in random exploration or move toward butterflies emitting stronger
scents.

* Optimization. The optimization phase focuses on iteratively refining the
solutions toward the global optimum. By continuously updating the scent
intensities and adjusting the movements of butterflies based on the
objective function evaluations, BOA attempts to converge toward high-quality
solutions.
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During the iteration phase, each butterfly’s stimulus intensity (I) is set based on

the objective function assessment. The stimulus intensity, indicated as I, for the i
butterfly can be computed as:

where f'(-) represents the objective function, 9 represents the iteration, and xl[‘g] is
the i butterfly in the population. The intensity of the smell that each firefly detects—

called 5;—can be calculated as a function of I in the following way:

)
0; = CI .

The parameter C represents the sensory scent, and o stands for the power

exponent, so that Ce [0,1]. If © = 0, no other butterfly is able to detect the scent
of another butterfly, and if © = 1, no fragrance is absorbed. Each butterfly in the
population travels in a specific route; a global or local search is done in this respect.
The global search phase is executed with the expression

Y =x 1 (7 Q%)

where Q * signifies the butterfly that released the strongest scent, achieving the
best objective function value, and § € [0, 1] is a uniformly generated random number.
The local search is carried out as:

Xl[19+1] _ XZ[S] n ( 52 % XJ[S] _ XIL«‘J]) -

In the solution space, the j* and k™ butterflies are randomly selected as X][lg] and

[9]

x; ', respectively. Consequently, the i butterfly’s motion is explained as:

(9] 2 A
941 _ X + (5 xQ" —x; )0,,f0r6p <p

' (9]

<! 9] _ 9]

+ (52 XX — X, )m, otherwise.

The BOA method applies a dynamic balance between extensive local search and
common global search, guided by a probability parameter p typically ranging between
0 and 1. This parameter determines the likelihood of a butterfly engaging in either
local or global exploration during each iteration of the algorithm. The iteration phase
of BOA continues until one of the termination criteria is met. These criteria may
include reaching a specified number of iterations, exceeding a predetermined error
threshold, or utilizing a predetermined amount of CPU time. In the final stage of the
algorithm, the solution with the highest fitness calculation, as evaluated by the objec-
tive function, is selected as the output solution.
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Through the interplay of scent-based communication and stochastic movement,
BOA facilitates the discovery of optimal or near-optimal solutions to challenging
optimization problems. In practice, BOA has been successfully applied to a wide range
of optimization tasks, including engineering design, scheduling, machine learning,
and robotics. Its versatility, robustness, and computational efficiency make it a
valuable tool for addressing real-world optimization problems. However, as the no-
free-lunch theorem asserts [60], no single algorithm is universally optimal for
solving all problems. While the BOA excels at efficiently exploring solution
spaces and finding satisfactory solutions for nonlinear systems of equations, it
does not guarantee globally optimal solutions. The effectiveness of BOA depends
on several factors, including the selection of optimal parameters, initialization pro-
cedures, and the complexity of the equations being solved. The algorithm may
encounter difficulties when confronted with highly nonlinear systems, complex
optimization landscapes, or high-dimensional solution spaces. Additionally, the com-
putational cost associated with BOA can be prohibitive, especially for large-scale
problems.

To address these limitations, in the next section we propose the implementation of

a hybrid numerical technique that combines oM with our recently developed

[1] . . - . .
MM?" . By integrating the characteristics of both approaches, our hybrid method aims
to improve convergence rates, mitigate divergence issues, and increase the likelihood
of finding globally optimal or near-optimal solutions.

4. Hybrid numerical butterfly optimization scheme (MMam)

The hybrid numerical Butterfly optimization strategy employs a two-step

numerical iterative scheme MMam in each iteration. First, the OMDM method is
used to determine the optimal butterfly position (BFP). Using this BFP as input in a
two-step numerical iterative technique allows us to refine the starting position to the
desired precision. The initial location is iteratively fed into the two-step process

MMDD] , which results in significantly enhanced butterfly locations. The framework is

- . f1+] m, .
shown in Figure 1. Combining OM®  and MM®  improves the solution of the
nonlinear system of equations under the conditions of the local convergence theorem

in Banach space (LCT-IIB) derived in the previous section. Finally, the MM
produces refined butterfly positions.

In developing our hybrid numerical optimization scheme for solving
nonlinear systems of equations, we leverage the power of iterative
refinement to enhance robustness and efficiency. Our approach is based on three
key principles:

* Iterative Refinement of Solutions: We employ an iterative technique
that iteratively refines and improves the solution obtained. By leveraging
local convergence assumptions in Banach space, we ensure rapid progress
toward optimal solutions, enhancing the overall efficiency of the optimization
process.
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! Iterations (j)=0 /

Butterfly Optimization Scheme
Find the Best Butterfly Position (BFP)

Tm-ste_p_ﬂmﬁéﬁgal Scheme l "“"-“\_

m_ ., _ F(xp)
R 7 \‘

g Fe-relh \re \
/ ' ' aF‘(x!n) + (2= a)F(xp) | F'(¥D .

Yes '\ |
While j>=1 /
If Fitness (X..<Fitness (BFP)

S BFP = Xi _~

e

No

|

/ Best Location /

The framework of the hybrid numerical optimization scheme My for solving Eq. (1).

Figure 1.

* Adaptability to Complex Problem Landscapes: Real-world optimization
problems often feature complex and dynamic landscapes characterized by
multiple local minima and maxima. Our iterative approach excels in navigating
such intricate landscapes by adapting to changing conditions and exploring
diverse regions of the solution space in each iteration.

* Sensitivity to Initial Guesses: Our iterative approach is carefully designed to
mitigate sensitivity to initial guesses over successive iterations. By iteratively
refining solutions and gradually reducing dependence on initial conditions, we
enhance the robustness of the optimization process and ensure consistent
performance across different starting points.

In summary, our hybrid numerical optimization scheme combines the
power of iterative refinement with adaptability to complex landscapes and
reduced sensitivity to initial guesses, aiming to deliver a robust and efficient
approach for solving nonlinear systems of equations. Algorithm 1 describes the
whole procedure.
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Algorithm 1: Hybrid Numerical Butterfly Optimization Scheme MM°”) for
solving of nonlinear system of equations.

[ Step 1: Inputs
o"System of Equations": The system of nonliner equations
¢"System of Equations": Initial gusses for the solution vector
¢"Convergence Criteria”: Threshold for convergence
o"Maximum Iterationss": Maximum number of iterations
Step 2: Initialization
& Tnitialize the solution vector "x" with "InilizalSolution"
e Set iteration "i" to 0
Step 3: Main Loop
[ While "i" is less than " MaxIterations"
Perform Butterfly Optimazation Techanique
Call "x—ButterllyExplore(X)"
Find Best Butterfly Position (BTP)
Perform Two-Step Numerical Scheme using BFP as an input
Call "x=Two_Step Numerical Scheme(System  of Nonlinear Eqx)"
[ For iteration—1:Mazlteration
F(x)—Objective_function()%nonlinar system of equation
F'{x)—J—Jacobian(Solution)

2 ! Pl ) —F(x;']) Fix
x;'fx!J— ” “T], ()f’,; - _L.-(‘X}. .
2 et (xMi2—a) i x) )R ()
End do
Check Convergence

o If "Clonvergene (System_of _ Eqg.x,Convergence _ Critexia)"
hold
Exist Loop
Ineriment the iterations counter i.e.,
o I[ "i=i{-1"

L End do
Step 4: Quiput

Return the final solition Vector "X"

End Computer Parogramme

5. Dynamical analysis of the MM°" and MM°” methods

In the context of nonlinear root-finding algorithms, the dynamical plane refers to a
geometric representation used to study the behavior and convergence properties of
iterative methods for finding roots of nonlinear equations. The dynamical plane typ-
ically consists of a coordinate system where each point represents an initial guess for
the root, and the trajectory of each point under the iteration process illustrates how
the algorithm converges (or diverges) toward the actual root. By studying the patterns
of convergence or divergence in the dynamical plane, researchers can gain insights
into the efficiency, stability, and robustness of the root-finding algorithm under
consideration. On the other hand, the basin of attraction refers to the region of the
dynamical plane where initial guesses converge to a specific root under the iteration
process. Each root of the equation typically has its own basin of attraction, and points
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within each basin converge to that particular root. The basin of attraction helps
visualize which initial guesses will lead to convergence to a particular root, and which
will not. In our dynamical analysis, we will analyze in particular the following aspects.

Convergence patterns. Basins of attraction illustrate how iteration can
diverge or converge depending on the initial values. Observing how points in the dynam-
ical plane approach roots (or fail to approach them) over iterations helps identify whether
convergence is smooth, erratic, or exhibits oscillatory behavior. A wider basin indicates
that the method is more likely to converge from a larger set of initial values.

Stability. The shape and size of the basins of attraction can indicate the stability of
iterative solutions. Greater stability is often suggested by larger, more uniformly
formed basins. Fractured or inconsistent basins, on the other hand, may indicate
regions of instability or sensitivity to initial conditions. Stability refers to the behavior
of the algorithm when subjected to small perturbations, such as rounding errors or
noise in the system. Understanding the stability of the algorithm helps ensure reliable
performance in practical applications.

Rate of convergence. A faster rate of convergence means fewer iterations are needed
to obtain an accurate result. The convergence behavior varies across the solution space
[61, 62]. Basins of attraction can provide insights into the speed of convergence of
iterative methods. Methods with basins that quickly attract trajectories to their respective
attractors indicate faster convergence rates, while methods with slower convergence may
have smaller basins or regions of slower convergence. Based on this analysis, we may
choose the best numerical method for solving a nonlinear problem.

Sensitivity on initial guess. Different initial guesses can lead to convergence to
different roots or no convergence at all. Examining how sensitive the algorithm is to
variations in initial guesses provides insight into its robustness and reliability in
finding solutions. If, for a particular choice of starting values, the iterative method
fails to generate basins of attraction after a predetermined number of iterations, it is
sensitive to the initial values.

Percentage convergence or divergence. Computing the percentage convergence or
divergence of an iterative method using basins of attraction involves analyzing the distri-
bution of initial conditions within the dynamical plane, and determining the proportion
of points that converge or diverge under iteration and multiply the result by 100.

We generate the basins of attraction using a 800 x 800 grid of squares [—8, 8] x

[—8, 8] in the complex plane. If the iterative technique MM -MmP” approximates the
root within 20 iterations and satisfies the tolerance ||x;1 — ;|| <1072, each root is
assigned a color; otherwise, a dark red color is used. Using a larger radius for the
numerical schemes generated from the preceding local convergence (see Table 1), basin
color brightness, and smoothness results in fewer iterations and faster numerical scheme
convergence. We develop an efficient numerical approach based on the percentage con-
vergence divergence in the basins of attraction.

Below, we illustrate the basins of attractions for the nonlinear function F on Q =
xl[l] =R and @[3, 3] defined as:

Method d[lll d[zl ] min{d[ll], d[zl ]}
MMD” 0.006896313920 0.00307650880 0.00307650880
Table 1.

; . . 1
Comparison of convergence vadii for numerical scheme MM® ",
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Method Els-Time Average-It T-Points D-Points C-Points

Analysis of the dynamical planes using different convergent-divergent points

" 0.0124010 19.0 640,000 1500.1256 638499.8744

MM2" 2.2500124 17.0 640,000 650.0013 639349.9987

Analysis using condition of the LCT-IIB

MMD” 0.145213 19.0 640,000 703.51 639296.49
MM2” 3.545213 16.0 640,000 132.5463 639867.4537
Table 2.

Dynamical study of numerical schemes MM — MMD[Z].

(45)

Flx) = {xlnx2+x5—x4,x #0,

0,x =0,

forx* =1. We set wo(y) = 96.67y, w(y) = 96.67y, w1(y) = 2. Table 1 summarizes
our analysis of convergence radii.

In Table 2, D-points indicates the diverging points, C-Points denotes the converging
points, Els-Time reports the elapsed time in seconds, and Average-It is the average
number of iterations required to converge to the exact root. Table 2 indicates that

@ . . . g
MM°" outperforms MM® " in terms of converging points utilizing the local convergence
theorem’s criteria and has a faster convergence rate. Figure 2 depicts dynamic patterns

. e m G, . . .
corresponding to (45) utilizing MM® and MM®" . Brighter hues in basins of attraction
imply fewer iterations needed to converge to exact roots. The percentage convergence

of MM®" and MM®” is 99.7 and 99.89 percent, respectively, without utilizing LCT-IIB,
and increases to 99.89 and 99.97 percent with LCT-IIB.

6. Numerical outcomes

. . o
In order to estimate the computational order of convergence (CO‘9 ), the approx-
. . 2 .
imate computational order of convergence (CO’9 ), and the local computational

g . .
order of convergence (COS ) of our method, we compute the following quantities:

Xip1—X" X1 =X )
Cyp:m(ﬁw!)qwajﬂm%q>cwmgmmﬂ—wm.
In(||2=])) In||x=2/) In([jx; —x* )

Note that we use CO""-CO"” to compute the convergence order without
considering the function’s higher-order derivative. Tables 3-12 present estimates of
the convergence radii for numerical examples 1-3 using local convergence theorem
conditions. In all Tables F™ represents the fitness function:

FT* =\ (1t o) 4 o+ (F (61, o 0))
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¥

(e} ()

Figure 2.
(a-d) Basins of attraction of M mv” for (45). Figure (a,b)-shows the basins of attraction of MM

MM without using the assumption LCT-IIB and Figure (c,d)-basins of attraction of MM e using the
assumption of LCT-IIB. In basins of attractions, the white circle represents the roots of (45). The color brightening
and wide regular shape of (c,d) show the less number of iterations and are more stable than (a,b).

which measures the accuracy of the optimization scheme without using the
assumptions of LCT-IIB to solve (46). The Euclidean norm (or norm-2) of F(x) =
f1(x15 ooy x0) + oo +f, (%1, ..., X,) was used to calculate the fitness function. To show the
efficiency and stability of our hybrid scheme in comparison with existing classical iterative
approaches, we combine the well-known Newton Trapezoidal methodology [57].

n_ . F(x)
BT F )
xlm =x;—2 Fxi) s
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Method CPU-Time Maximum -Error Minmum-Error cocC coc?’

Analysis of MM s MM , MM® § approximations without using the LCT-IIB conditions

mve” 212167 1.12e-02 2.15e-05 3.0124 3.02141
MM 1.13167 6.12e-05 1.7e-11 3.1421 3.31450
v 1.13167 6.12e-05 1.7e-11 3.1421 3.31450

Analysis of MM, MM, MM?? approximations using the LCT-IIB conditions

MM?2 1 1.25401 4.1e-05 1.1e-14 3.21014 3.2145

MvE" 0.01234 7.7e-12 3.1e-18 3.7514 3.5146

MM 3l 0.01234 7.7e-12 3.1e-18 3.7514 3.5146
Table 4.

Comparative analysis of the consistency of classical and hybrid numerical schemes utilized in the solution of
nonlinear equations for solving Example 1.

Schemes x9 = (1.5,1) xo = (1.5,1) x9 = (1.5,1) xo = (1.5,1) x9 = (1.5,1)
jVives 1.3e-03 2.1e-05 1.1e-02 1.1e-04 3.1e-02
Mme” 6.1e-05 1.7e-10 1.6e-08 6.1e-07 1.6e-06
Iterations 06 10 06 10 06

Comparison of errors in the approximation of the solution to Example 1 when local convergence
conditions in Banach space (LCT-IIB) are applied

MM® 4 1.1e-14 6.1e-06 4.1e-05 5.2e-07 3.1e-06

MMDYZ‘ 3.1e-18 7.1e-12 7.1e-14 6.4e-14 8.4e-13

Iterations 06 10 06 10 06
Table 5.

; i1 2) . L . .
Comparison of MMP" — MM®" errors for different initial guess values in order to solve the system of nonlinear
equations in Example 1.

Initial guesses Parameter Mve” Mve?

{xi‘” Ll } « co” co”  co”  co” co” co”
{0.01,0.02} 0.1201 2.1562 2.9814 3.0124 3.0145 3.3115 3.4125
{0.25,0.081} 0.5201 3.1311 2.7165 3.0021 3.2151 3.0124 3.6714
{0.031,0.31} 5.1201 2.1142 2.7145 3.0121 3.5612 3.4210 3.3711
{0.011,0.014} 0.1201 2.9191 2.6984 2.9912 3.7815 3.1415 3.3431
{0.01,0.012} 2.1761 2.5122 2.8741 2.6113 3.7841 3.6951 2.9541

Table 6.

Comparison of the local computational order of convergence between standard and hybrid numerical schemes for
solving Example 1 for diffevent parameter values using the LCT-IIB conditions.
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Method CPU-Time Maximum-Error Minimum-Error cocC coc?’

Analysis of MM s MM , MM® § approximations without using the LCT-IIB conditions

mve” 3.1211 7.71632e-01 3.15125e-06 2.801121129 2.91298554
MM 2.3491 8.12451e-03 9.12654e-12 3.012321008 3.31223145
v 4.2391 7.10051e-01 8.65034e-05 2.095323423 2.90043318

Analysis of MM, MM, MM?? approximations using the LCT-IIB conditions

MM?2 1 2.3121 8.8124e-06 7.61254e-11 3.01221665 3.011351

MM? 2 0.0124 9.3635e-13 3.12351e-18 3.39121987 3.561364

MM? 3l 3.6154 7.6535e-05 4.5561e-10 2.9900987 3.000375
Table 8.

Comparative analysis of the consistency of classical and hybrid numerical schemes utilized in the solution of the
nonlinear system of equations used in Example 2.

Schemes vV, V, V3 Va4 Vs
MM 1.7145154e-04 3.1458741e-06 7.7154824e-01 6.954711e-01 6.145212e-02
MM2” 4.2151254e-07 9.145217e-012 9.9854135e-04 3.654128e-03 6.325145e-03
Iterations 06 04 06 06 06

Comparison of errors in the approximation of the solution to Example 2 when local convergence
conditions in Banach space (LCT-IIB) are applied

MM 1 9.2145128e-011 3.21456e-006 4.6215481e-006 6.352145e-006 3.201545e-006
v 1.001245e-018 6.21451e-014 9.3215425e-013  5.002145e-014  6.321543e-016
Iterations 06 04 06 06 06

We denote V; = {0.02,0.11,0.5,0.01,0.4,0.214}, V, = {0.0,0.3,0.4,0.7,0.8,0.21},
Vs = {0.012,0.1,0.05,0.10,0.09,0.014}, V, = {0.141,0.08,0.14,0.2,0.0,0.021}, and
Vs = {0.0,0.1,0.06,0.01,0.05,0.0}..

Table 9.
Comparison of MM — MM errors for different initial guess values theorem in Banach space.

Initial guesses Parameter M Mve?
[0} @ co®  co” co® co” co”  co”
Vi 3.21451 2.91452 2.3651 3.0215 3.0124 3.5412 3.5142
v, 3.21451 2.98541 2.9845 3.2145 3.1124 3.0124 3.0061
V3 3.21451 2.39654 2.9874 3.1241 3.2415 3.6541 3.7145
\' 3.21451 3.02145 2.1451 3.0214 3.0124 2.9991 3.0014
Vs 3.21451 2.99841 2.6541 2.9991 3.3210 3.001 3.1748
Table 10.

Comparison of the local computational order of convergence between standard and hybrid numerical schemes for
solving Example 2 for diffevent parameter values using the LCT-IIB conditions.
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Method CPU-Time Maximum-Error Minimum-Error cocC coc?’

Analysis of MM s VIV , MM® § approximations without using the LCT-IIB conditions

mve” 6.12112 0.72132e-01 1.12125e-06 3.411121129 2.9529855
MM 4.52191 3.10051e-03 3.11454e-12 3.0123001008 3.30023145
v 5.672153 0.47651e-02 7.14544e-10 2.986454375 1.30023145

Analysis of MM , MM , MM? : approximations using the LCT-IIB conditions

MMD” 3.31215 2.82240e-06 9.61254e-11 3.014451665 3.087451

MM? 3l 1.01246 3.36005e-13 0.10051e-18 3.31121987 3.561365

MM? 3l 2.01543 0.65991e-07 0.56436e-11 2.00543987 2.564755
Table 11.

Comparative analysis of the consistency of classical and hybrid numerical schemes utilized in the solution of the
nonlinear system of equations used in Example 3.

Initial guesses Parameter MM MM

{xi‘”, eyl } a co®” co®  co”™ co"  co® co®
Vi 3.23251 2.91452 2.3321 3.0215 3.0224 3.5412 3.51242
\%) 3.00151 2.98111 2.9845 3.2125 3.1100 3.0124 3.0161
V3 3.5451 2.39224 2.9324 3.1541 3.2415 3.6651 3.7525
Vy 3.28451 3.02355 21111 3.0314 3.0124 2.9991 3.0014
Vs 3.20051 294241 2.6041 2.0091 3.3210 3.001 3.1658

We denote V; = {0.2,0.5,0.1,0.4,0.1,0.5,0.1,0.4,0.214,0.5,0.1,0.4,0.1,1.0},
V, = {0.0,0.4,0.7,0.8,0.3,0.4,0.9,0.8,0.21,0.14,0.7,0.8,0.0,0.12},

V3 = {0.12,0.5,0.1,0.9,0.14,0.1,0.5,0.1,0.9,0.14,3.5,8.1,0.9,0.14},

V. = {0.2,0.0,0.21,0.11,0.8,0.14,0.2,0.0,0.21,0.1,1.1,0.2,14.3,3.1}, and
Vs = {0.0,3.1,0.6,0.1,0.5,0.0,3.2,0.0,0.21,0.2,1.3,2.5,0.6,6.3}...

Table 12.
Comparison of the local computational ovder of convergence between standard and hybrid numerical schemes for
solving Example 3 for different pavameter values using the LCT-IIB conditions.

with Algorithm 1 to construct a hybrid-optimized scheme abbreviated as

abbreviated as MM°" .
Example 1: Consider the nonlinear system of equations shown below [63].

Fix) = { x1 + €2 — cos(xy) =0, (46)

3x; — sin(xq) —x2 =0,

which has the solution x* = (0, 0)".
Based on the results presented in Table 3 and Figure 3(a,b), it is evident that the

. . o @ m g
hybrid numerical optimization approach MM®" outperforms MM® , MM?",

f1+] el
OM” ~ —OM” " in both cases, regardless of whether the local convergence theorem
assumptions in Banach space are implemented or not.
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Figure 3.

(a,b) A comparison of error graphs between hybrid and classical numerical algorithms with different initial guess
values for solving (46).

The results of the consistency and stability analyses for the numerical schemes
MM , MMDm, and MM°” are presented in Tables 4 and 5, respectively. The consis-
tency results of Table 4 demonstrates unequivocally that the methods MM, MM,
and MM°” are more consistent when the LCT-IIB conditions are used. Implementing

S i
these assumptions improves the convergence order, COC, and COC®". Regardless of
whether the local convergence conditions are satisfied or not, Table 5 demonstrates

: . o, . .
that the residual error of numerical scheme MM is considerably superior to that of

i e . . . . o
MM for various initial vectors in both scenarios. A hybrid numerical optimization
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technique exhibits a markedly superior performance in solving (46) compared to a
classical iterative scheme. The computational order of convergence of the numerical

schemes MM®" — MM”" for a variety of initial vectors is illustrated in Table 6.
Example 2: Consider a nonlinear system of equations resulting from a neurophys-
iology problem describe below [64]:

x?+x3-1=0,
X +x3-1=0,
3 3 _
x5x3 +xex3 = 0,
F(x) = 3 TR —10<x1, ..., x6 < 10. (47)
3 3
xs5x7 4+ x6x5 = 0,

x5x163 4 x6x2x5 = 0,

xsxgx% + x6x4x% =0,

The above nonlinear equations have several solutions within the interval [-10,10]
and are difficult to solve.

Table 7, show that the hybrid numerical optimization approach MM®” outper-
forms MMam, MMam, OMDM — OMDW in both cases, with and without LCT-IIB

assumptions (Figure 4).
Tables 8 and 9 illustrate the results of the consistency and stability analyses

. [1] B . _
performed on the numerical schemes MM® — MM?" . Implementing the criteria of

: : . [11 Gl
Theorem 2 in Banach space improves the consistency of methods MM®  — MM®", as
seen in Table 8. The maximum and minimum errors, which apply local convergence
assumptions in Banach space, demonstrate the system’s increased stability. Applying

these assumptions improves convergence order, COC, and cOC”". Table 9 shows

o, . w, . .
that MM® s residual error outperforms MM® s for various starting vectors, regard-
less of whether local convergence requirements are met. For solving (47), a hybrid

numerical optimization technique MM?” outperforms MM®". Table 10 shows the
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A comparison of ervor graphs between hybrid and classical numerical algorvithms with different initial guess values
for solving (47).
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Solution of the boundary value problem using classical and hybnd optimazation techaniques
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Figure 5.
Solution of the boundary value problem using classical and hybrid numerical schemes, with and without the use
assumptions of LCT-IIB.

computational order of convergence of the numerical schemes MM — MM?” for
different initial vectors.

Example 3: We consider a real life application described by the nonlinear bound-
ary value problem [65].

2 — _ B
a2 P joswst (48)

The interval [0,1] is discretized as follows:

x0=0<x1<x< - <Xy, <x,,,1:1,x]-,1 :Xj+h, (49)

where /i = -2 is the step length and m is the size of the nonlinear system of
equations which is obtained after discretizing the problem using finite difference

approximation. Using central difference approximation of
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A comparison of ervor graphs between hybrid and classical numerical algovithms with different initial guess values
for solving (48).

=2y, .
y”z%,i =12, ..m. (50)

in (48), we obtained the following nonlinear system of equations for m = 15.
F(y) =9i1 = i +y,4 HH2PY = 0,i =123, .m. (51)

Using MATLABs built-in package BVP4C, we can solve the problem (48) to four
decimal places.

16.86666667,16.73333333,16.6,16.46666667, 16.33333333,16.2, r
V = | 16.06666667,15.9333333, 15.8, 15.66666667, 15.53333333, 15.4, 15.26666667
15.13333333, 15,1.86666667, 14.733333333, 14.6, 14.46666667

Figure 5 and Table 11 show the approximate solution to the boundary values

problem using MM>" — MM?", with and without the LCT-IIB condition (Figure 6).
Table 11 displays the consistency and stability analysis results for numerical

schemes MM?" — MM°”. Table 11 demonstrates that applying the criteria of Theo-
rem 2 in Banach space improves the consistency of methods MM, MM?”, and

MM®” . The residual error curve in Figure 6 shows that MM°" has a higher conver-
gence rate than MM°" . Table 12 depicts the computational order of convergence of

. o) el . .
the numerical schemes MM® — MM®  for various initial vectors.

7. Conclusion

In this research, we proposed a two-step numerical approach to solving nonlinear
equations. We discussed the local convergence of the proposed scheme in Banach
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space. Using the assumption of the convergence theorem in Banach space improves
convergence rate, as demonstrated in the dynamical analysis. Tables 1 and 2 and
Figure 2 show the convergence radii and results from the dynamical analysis. Fur-
thermore, a hybrid numerical scheme is proposes that combines the two-step iterative
method with the Butterfly optimization method to overcome the limitation of local
minima, increase the convergence rate, and yields better approximations than
oM™ — oM,

Our study compares the efficiency of the proposed technique for different engi-
neering applications with and without the use of the local convergence theorem in
Banach space. In all circumstances, the 2-norm fitness function is utilized. Tables 3, 7,

@ . .
and 11 show that MM®° outperforms alternative techniques. Tables 4, 5, 8, 9, and 11
demonstrate the consistency and stability of the two-step iterative process, as well as

classical and hybrid optimization techniques. Tables 1-12 demonstrate that the MM
is significantly more reliable and consistent than the MMam , MMam and

oM — om>"" , respectively. Finally, Tables 6, 10, and 12 show both the conver-
gence rate and the local computational order of convergence. Using the assumptions of
Theorem 2 improves both the rate and the local computational order of convergence.

In the future, we will investigate and analyze higher-order numerical iterative
schemes and hybrid optimization schemes utilizing the methods described in this
article to solve more complex engineering problems.
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Perspective Chapter: Enhancing
Regression Analysis with Splines
and Machine Learning — Evaluation
of How to Capture Complex
Non-Linear Multidimensional
Variables

Alexander A. Huang and Samuel Y. Huang

Abstract

This chapter focuses upon the use of both splines and machine-learning in prediction
and the methodology for constructing splines in a predictive context. In the realm of
predictive modeling, machine learning and splines represent two pivotal approaches
that address the complexity of capturing nonlinear relationships within data. Machine
learning excels in identifying intricate patterns and relationships through algorithms
that learn from data, making it a powerful tool for prediction across vast datasets.
However, its often opaque nature can pose challenges for interpretability. In contrast,
splines offer a bridge between the simplicity of linear regression and the complexity
of machine learning. By introducing cutpoints in the data, splines allow for flexible
modeling of nonlinear trends, providing a clearer interpretation of how independent
variables influence the dependent variable across different segments. This makes
splines particularly valuable in multivariable regression contexts, where understand-
ing the nuanced effects of covariates is crucial. While machine learning may deliver
superior predictive power in some cases, splines provide a compelling balance of
predictability and interpretability, especially in scenarios where understanding the
underlying model is as important as the accuracy of predictions.

Keywords: splines, regression analysis, nonlinear relationships, model interpretability,
cutpoints, overfitting, multivariable regression, predictive modeling

1. Introduction

Splines play an essential role in enhancing predictive modeling by introducing
flexibility that linear models lack, especially when dealing with complex, nonlinear
relationships inherent in many real-world datasets. Their unique ability to segment
data into intervals and fit different polynomial equations within these segments
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allows for a nuanced capture of trends that might otherwise be missed by more
straightforward approaches. This adaptability makes splines particularly useful in
fields such as epidemiology, finance, and environmental science, where understand-
ing the intricacies of variable interactions can lead to more accurate and meaningful
predictions. Moreover, the strategic placement of knots or cut points in the data can
fine-tune the model’s sensitivity to changes, optimizing the balance between over-
fitting and underfitting. As a result, splines provide a powerful tool for predictive
modeling, offering a blend of precision and interpretability that enhances the quality
of insights derived from complex [1-5].

Machine learning has revolutionized predictive modeling by leveraging algorithms
that learn from data, enabling the identification of complex patterns and relationships
that are not readily apparent. Unlike traditional statistical methods, machine learn-
ing can handle vast amounts of unstructured data—ranging from images and text to
intricate sensor data—facilitating the development of models that can predict out-
comes with remarkable accuracy. Its applications span a wide array of fields, including
finance, where it predicts market trends and credit risks; healthcare, where it forecasts
disease progression and patient outcomes; and e-commerce, where it enhances cus-
tomer experience through personalized recommendations. By employing techniques
such as regression, classification, and neural networks, machine learning automates
the model-building process, continuously improving its predictions as more data
becomes available. This self-improving capability allows machine learning models to
adapt over time, making them invaluable for predictive modeling in dynamic environ-
ments where patterns and relationships can change rapidly [2, 3, 6].

The benefits of splines and machine learning in predictive modeling, while dis-
tinct, collectively contribute to advancing the field of data analysis. Splines offer the
advantage of modeling non-linear relationships with a high degree of interpretability,
allowing researchers to understand and explain the effects of independent variables
on the dependent variable across different data segments. This characteristic is
particularly beneficial in fields requiring clear explanations of model behavior, such as
epidemiology and economics, where understanding the nature of variable interactions
is as important as the predictions themselves. On the other hand, machine learning
excels in handling complex, high-dimensional datasets, offering superior predic-
tive accuracy through its ability to learn from data patterns and adjust its algorithms
accordingly. This makes it particularly useful in applications where the primary goal
is prediction accuracy, such as in image recognition, natural language processing, and
real-time decision-making systems. Together, splines and machine learning encom-
pass a spectrum of benefits from interpretability and precision to adaptability and
accuracy, catering to diverse needs within the predictive modeling landscape [7-11].

This chapter delves into the multifaceted role of splines, starting with their
construction and moving through to their interpretation within multivariable models.
It concludes by exploring their application in predictive contexts and drawing com-
parisons with machine learning techniques.

2. Constructing, visualizing and interpreting nonlinear relationships: the
role of splines in regression analysis

Constructing a univariable model using splines involves a systematic approach to
model nonlinear relationships within a dataset. The process begins with the selection
of the variable of interest and the identification of its potential nonlinear relationship
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with the outcome. Splines allow for this relationship to be modeled by breaking the
data into segments and fitting a polynomial function to each segment. The first step
in constructing such a model is to determine the appropriate type of spline—linear,
quadratic, cubic, or of a higher degree—based on the nature of the data and the rela-
tionship under investigation. The choice of spline affects the flexibility and complex-
ity of the model, with higher-degree splines offering greater flexibility at the cost of
increased complexity and risk of overfitting [9, 12-14].

After selecting the spline type, the next critical step is the placement of knots.
Knots are specific points in the range of the data where the spline’s polynomial degree
changes, allowing the model to fit more closely to the data in regions where the rela-
tionship between the variable and the outcome changes. The placement of these knots
can be based on quantiles, domain knowledge, or through optimization techniques
that seek to minimize prediction error. It’s essential to strike a balance between having
enough knots to accurately model the relationship and having too many, which could
lead to overfitting. Typically, starting with a smaller number of knots and incremen-
tally adding more based on model performance and validation metrics is a prudent
approach [6, 15-18].

Finally, once the spline type and knots are determined, the model can be con-
structed using statistical software that supports spline modeling. The software will fit
the specified spline model to the data, segmenting it at the chosen knots and apply-
ing the polynomial functions accordingly. The resulting model coefficients provide
insights into the relationship between the variable and the outcome, adjusted for the
nonlinearity captured by the splines. It’s crucial to evaluate the model’s fit and predic-
tive accuracy through diagnostics and validation techniques, such as cross-validation,
to ensure that the model adequately captures the underlying relationship without
overfitting. By carefully following these steps, researchers can construct a robust
univariable spline model that provides valuable insights into complex relationships
within their data [2, 19-23].

Splines can effectively enhance the goodness of fit commonly utilized in linear
regression. In linear regression, a common practice involves analyzing a set of data
comprising two variables by regressing one against the other using least squares
regression. This method is frequently employed in medical literature to discern the
relationship between two variables, typically through a simple linear regression.

This regression model aids in understanding the relationship’s parameters, such as
the slope and variability of the line concerning the variables, often summarized by
the standard error of the intercept and slope, along with the overall goodness of fit,
usually represented by the R-squared value. This analysis quickly determines the
significance of the computed slopes by comparing them to 0, indicating whether the
covariate is a significant predictor. However, the major weakness of linear regression
lies in its inability to accurately capture nonlinear relationships, such as curvilinear
or asymptotic relationships, requiring rigorous thinking to model these complexities
accurately. This is where a simple spline can be instrumental.

One exercise can be to understand how two covariates in the medical literature
relate to each other, for example, the effect that vitamin E has on depression screen-
ing scores. In this mathematics learning exercise, students will explore the concept
of splines to understand how nonlinear relationships between two variables can be
modeled and interpreted. The focus will be on the real-world application of how the
intake of vitamin E influences various health outcomes like depression, sleep qual-
ity, and general health, noting that the beneficial effects tend to level off beyond a
certain dosage, approximately at 15 units. This scenario illustrates the critical role of
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nonlinear modeling in determining the optimal nutrient levels, avoiding both defi-
ciency and excess. Using a spline, we can establish nonlinear relationships between
two variables, where the association depends on the independent variables’ values.
For example, in medical literature, the effect of vitamin E varies across different
dependent variables, such as depression, sleep, and overall general health, with the
relationship often plateauing at around 15 units. This example underscores the impor-
tance of modeling nonlinear relationships. One application of this is in understanding
nutritional covariance with other variables. For instance, having more of a particular
nutrient does not necessarily equate to better outcomes, as insufficient levels can
lead to nutritional deficiencies and poor health. Modeling nonlinear relationships
enables us to determine the optimal dose of medication or nutrient, showing when
the effect plateaus. This can be achieved through segmenting the data and modeling
different areas, allowing us to understand the model’s benefits. Cubic functions are
commonly used for spline execution, fitting polynomial curves at different cut points.
This approach improves goodness of fit by accurately modeling nonlinear functions
and providing more information, leading to increased model accuracy throughout. A
figure generated like below shows how splines can effectively evaluate the relation-
ship between independent and dependent covariates (Figure 1) [24-26].

One significant advantage of univariate or simple linear regression is the ability
to visualize the goodness of fit through plotting. This allows for easy evaluation of
how the dependent and independent variables relate across the entire range of the
independent variable. Consequently, it becomes apparent if there’s a strong non-
linear relationship present in specific areas. Visualizing the spline results alongside
the covariance output enables a robust assessment of the benefits and goodness of
fit achieved through spline development. Comparing this with linear regression

Probability of Depressive Symptoms

0 0 40

Vitamin E Intake (mg/day)

Figure 1.

The association between vitamin E intake and the likelihood of experiencing depressive symptoms, as assessed by
the Patient Health Questionaire (PHQ )-9 scale. The connection between dietary vitamin E intake (represented
on the x-axis, determined from dietary logs) and the likelihood of depressive symptoms (vepresented on the y-axis,
evaluated through the PHQ-9 questionnaire).
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plots facilitates a clear understanding of the advantages gained. Furthermore, this
approach enhances interpretability by illustrating the spline’s influence within the
dataset context. Utilizing tools like bootstrap regression to address spline uncertainty
facilitates a robust interaction between covariates, providing a visual summary and
aiding interpretation [24-26].

3. Interpreting splines in multivariable regression: principles and
considerations

Multivariate regression in the context of splines is very similar to the previously
mentioned simple linear regression, wherein there is an ability to quantify the nonlin-
ear relations present in ways that take into account how the independent and depen-
dent relationships vary as the independent variable changes across its domain. Thus,
it’s crucial to extend this logic to multivariate regression, which is common in medical
literature as a means to summarize the relationships between independent variables
and the final dependent variable. However, the challenge lies in the development and
evaluation of the spline. Additionally, interpretation of the spline itself differs. In eval-
uating multivariate linear regression, we often assume that all independent covariates
are not only orthogonal to each other, meaning each covariate does not affect the
others’ relationship with the final product, but also that each covariate’s interpreta-
tion remains stable throughout, implying the slope has no change over its domain.
However, with the introduction of a spline, both of these assumptions become more
challenging. First, the independence assumption is questioned. Secondly, in interpre-
tation, two key considerations arise: whether the current independent variables being
compared are independent of each other and whether the two splines created and the
relationships built upon them remain independent [21, 23, 27, 28].

The first assumption is addressed similarly to how it’s done in normal linear
regression. We compare variables to determine if they are independent of each other.
If they are, the same assumptions apply to that assembly, and the logic holds because
functions of independent variables are independent of each other, regardless of the
function, as long as the function does not contain the other covariate or covariates
that are non-independent or dependent with the original covariate. Thus, it’s essential
that we still rely on the same assumptions as in normal multivariate regression, where
we need to have independent dependent variables. The splines do not complicate
these results; we are able to take into account the principle that functions of inde-
pendent variables are not independent functions. On the flip side, it’s important to
understand the next component of the ration, which is how to interpret the splines in
the context of other covariates. In normal linear regression, it does not matter what
the other covariates are since we already found that they are independent, and thus
holding one constant no longer changes the other. The question is, with the imple-
mentation of the spline, does this still hold? What is true is that they still hold based
on the principle that functions of independent variables still hold this function, and
thus the interpretation of a spline is the same, that we can [27, 29-32].

I interpret a slice of the data based on graphical principles. Each individual covari-
ate is plotted separately on a suitable landscape, allowing us to interpret each slice
independently, based on how the independent and dependent variables covary with
each other. As long as we start with the initial assumption, demonstrated through
normal linear regression techniques, of independence between all covariates, we can
effectively interpret each spline as an independent entity. This understanding stems
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from the fact that functions of independent covariates are functionally independent
from each other. There exists a strong relationship between interpreting each covari-
ate quantitatively [1, 4, 5, 33].

Another way to interpret these is as individual functions. Multivariate functions
provide an output for the entire multivariate regression, from which we can identify
significant components and assess their importance. A crucial principle in multi-
variable regression is recognizing that when one spline is overfitted, it may affect
the significance of other covariates. For instance, if we overfit one spline withn — 1
degrees of freedom, resulting in a perfect fit for all data points in our dataset, the
significance of other variables diminishes. Even if they are individually independent,
there are no degrees of freedom left to fit them. Thus, it’s essential to understand how
different degrees of freedom play a role in constructing the model [2].

I analyze a slice of the data based on graphical principles. Each individual covari-
ate is printed and plotted separately on a suitable landscape, enabling separate
interpretation of each based on how the independent and dependent variables covary.
As long as we maintain the initial assumption, demonstrated through normal linear
regression techniques, of independence between all covariates, we can effectively
interpret each spline as an independent entity. This understanding arises from the
fact that functions of independent covariates are functionally independent from
each other, establishing a strong relationship between the interpretation of each
covariance. Another method of interpretation is viewing them as individual func-
tions. Multivariate functions provide an output for the entire multivariate regression,
allowing us to assess which splines have significant components.

4. Balancing complexity and interpretability: the comparative use of
splines and machine learning in data analysis

In this section, we explore the utilization of Shapley additive explanations to
illuminate the predictive mechanisms of machine learning models, based on varying
feature inputs. We provide a potential exercise analyzing sample medical data. This
methodology enables an analysis of how changes in feature values can influence the
model’s predictions, either by escalating risks or diminishing adverse outcomes. Such
an approach underscores the models’ proficiency in navigating complex, interactive,
and nonlinear relationships without depending on conventional assumptions about
normality or the independence of covariates.

The challenge, however, lies in the interpretability of these machine learning
models to human users. The detailed components of these models, including elements
like gradient boosting trees, neural network nodes, and the intricate computational
steps, are largely inscrutable to non-expert users. This complexity contrasts sharply
with the transparency offered by traditional regression techniques, such as logistic
or linear regression. These techniques elucidate model dynamics through easily
understandable metrics like slopes and odds ratios, enabling clear comprehension
of covariate impacts. Unlike machine learning models, which may produce variable
outcomes due to their stochastic nature, regression techniques offer consistent results
across repeated applications, thanks to their deterministic framework [1, 3, 5, 34].

Our investigation revealed that, often, interpretations derived from Shapley
additive explanations align with those obtained from restricted cubic spline analysis
for several covariates, suggesting a level of consistency in their predictive insights.
However, discrepancies did emerge, potentially rooted in the distinct methods these
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approaches use to incorporate interactive effects. While restricted cubic splines adjust
for variables upfront and apply corrections based on least squares error, Shapley
additive explanations assess each covariate’s contribution in a more sequential man-
ner. Such differences may lead to variances in accounting for interactive effects.

This study leverages the complementary strengths of both methods, using the
transparency of restricted cubic splines to validate the insights gained from Shapley
Additive Values (SHAP) values. This dual approach confirmed that the machine
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Visualization of Shapley additive values with vestricted cubic splines below.
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learning models’ utilization of covariates mirrors clinical realities, as evidenced by the
consistent link between conditions like depression and insomnia identified by both
methods. Consequently, our research supports a combined application of SHAP values
and machine learning techniques, validated through the interpretability afforded by
restricted cubic splines, to create a predictive modeling approach that is both accurate
and accessible (Figure 2) [26, 35-37].

We can visualize the differences in how splines model data through direct compari-
son of model output. Comparative analysis of SHAP explanation contours (presented
above) against the restricted cubic spline profiles for each covariate (displayed below).

Machine learning is a widely used tool that accounts for the complex, non-literal
connections between variables in datasets, regardless of their completeness, inde-
pendence, or the understanding of the variables themselves. Its application across
literature, engineering, medicine, and mathematics demonstrates the promise
of these models in prediction, capable of generating complex decision trees and
identifying long-range covariate connections that are beyond human analytical
capabilities. This complexity arises from the intricate covariance relationships and
the sheer volume of data samples, often requiring computational power beyond
human calculation [38-40].

Splines, in a similar vein, offer a complexity that surpasses multilinear regression
models, providing greater accuracy. The choice between using splines and machine
learning techniques depends on the objectives of the study. For those seeking explicit,
interpretable models, simple splines or multilinear regression might be preferable
over machine learning, as each variable can be precisely interpreted, almost indepen-
dently from one another. Splines are noted for their strong interpretability, a contrast
to the often opaque nature of machine learning models. If splines and machine
learning models show equivalent predictive power, splines can be chosen to clearly
demonstrate covariate relationships. However, if machine learning models signifi-
cantly outperform splines in prediction accuracy, they should be utilized to leverage
their superior predictive capabilities [31, 41-44].

Despite the advantages, splines enable the visualization of relationships between
variables, including curvilinear connections, in a straightforward manner by
accounting for various covariates. This positions splines as a powerful tool, offering
both better predictability than linear models and easier interpretability compared to
machine learning models. Yet, they inhabit a “middle ground,” not as easily inter-
pretable as linear models nor as predictively powerful as machine learning models.
Therefore, splines represent a balanced option that requires careful evaluation to
determine their optimal use in research, capturing the benefits and drawbacks of
both worlds [45].

5. Optimizing model accuracy and interpretability: strategies for handling
dependent variables and preventing overfitting

A critical principle in multivariable regression is recognizing that when one spline is
overfitted, it may affect the significance of other covariates. For instance, if we overfit
one spline with n — 1 degrees of freedom, resulting in a perfect fit for all data points in
our dataset, the significance of other variables diminishes. Even if they are individually
independent, there are no degrees of freedom left to fit the others. Thus, it’s crucial to
understand how different degrees of freedom play a role in construction [22, 23, 46].
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Thus, we were able to carry out the spline analysis with accurate selection, building
an entire model that can be interpreted as previously stated. The next step involves
recognizing that independence in these models is not always present. This issue can
be most accurately addressed by combining variables, specifically by including only
one of two dependent variables. This approach helps in understanding potential
interaction terms and necessitates the use of simplification for accurate interpreta-
tion. In situations where interpretability is not a concern for multivariate regression,
an alternative method involves placing all variables in the model and performing an
accurate fit. This can be a potent method if compatibility is not an issue, as it is purely
a predictive exercise where overfitting might not be critically detrimental [21].

To prevent overfitting, which typically involves ensuring all variants are sig-
nificant and there is an increase in predictive value with a decrease in degrees of
freedom, another strategy involves using a train-test set. By allocating 80% of the
data for training and 20% for testing and ensuring the predictive variability does
not significantly differ between these two sets, we can propose a model with strong
predictive power both internally and externally. Therefore, we have confidence that
with additional new data, this model will continue to predict accurately moving
forward [40, 47, 48].

6. Balancing predictive power and complexity: evaluating splines for
optimal goodness of fit

Evaluating splines for goodness of fit presents a significant challenge due to the
need to balance the amount of variability they explain and the direction of this
variability. For instance, some splines may be highly predictive at extreme values of
the independent variable, demonstrating substantial predictive capacity in certain
ranges but not in others. Additionally, as data varies along the independent variable,
the sample size within each range—despite uniform absolute sizes—may differ, pos-
sibly requiring various transformations to account for this variability. Therefore, it’s
crucial to consider both the predictive value of each spline and where they are most
predictive [18, 39].

One method to evaluate the goodness of fit of a spline is through comparison to
its performance across different ranges of its domain, identifying where it is most
predictive. This approach is especially useful in contexts such as pharmaceutical tri-
als, where understanding the effect size within specific ranges can be critical.

Another approach involves comparing the splines fit to its performance across
varying degrees of freedom. This comparison can help determine whether adding
more points to the spline significantly improves the model’s explanatory power
compared to simpler models. Conducting an Analysis of Variance (ANOVA) test
is one method to assess this, allowing us to see if an additional predictor improves
variability explanation beyond what would be expected by chance. Principles such as
the Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), and
adjusted R-squared can also be employed to evaluate the inclusion of extra variables
that are considered beyond the reduced degrees of freedom provided by the spline,
effectively treating these additions as independent covariates [1, 4, 34].

Lastly, a straightforward evaluation involves assessing the spline’s significance
directly through its degrees of freedom and explained variability. If significant, this
may justify either further development or maintaining the model as constructed. This
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approach offers a simplified and direct method for interpreting the spline’s effective-
ness without the need for additional adjustments [1, 4, 34].

7. Adaptive complexity: the advantage of splines over polynomial
regression in data modeling

One analogy for the use of splines is their similarity to polynomial regression. In
polynomial regression, different powers of the covariate being analyzed are used as
distinct variables. These variables are treated as independent, despite being depen-
dent on the original covariate, essentially acting as indicator variables within the
regression. One of the key advantages of this approach is the ease of interpreting
the model, where summarizing the covariates’ slopes or coefficients offers a clear
depiction of the relationship. By constructing a polynomial function, where the
sum of the powers combined with their respective coefficients provides a compre-
hensive description of the dataset, we achieve an intuitive understanding of the
data relationships [4, 38, 49].

However, the challenge with polynomial regression lies in its least squares nature,
which requires the data’s curvature to be modeled under uniform constraints. This
becomes problematic when different segments of the dataset exhibit varying behav-
iors, such as some areas being linear and others polynomial, making it difficult for
polynomial regression to fully capture the dataset’s intricacies.

Splines address this limitation by employing local polynomial regressions that
can be adjusted based on the specific segment of the dataset being examined. This
flexibility allows for different levels of complexity in the model across various parts of
the data, leading to a more accurate and locally tailored representation. The ability
of splines to adapt their complexity to match the dataset’s local characteristics is one
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Figure 3.
Visualization of differences in fit between polynomial fitting, natural splines, and restricted cubic splines.
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of their significant benefits, enabling the creation of simpler models where appropri-
ate (Figure 3) [4, 38, 49].

This plot shows there are slight differences between comparing splines to polyno-
mial regression.

8. Striking the balance: the art and science of setting cutpoints in
restricted cubic spline models

In the realm of statistical modeling, particularly when employing restricted cubic
splines, the selection of appropriate cutpoints stands as a pivotal step. These splines,
designed to capture nonlinear relationships without pre-specifying the relationship’s
form, require cutpoints—specific locations on the predictor variable axis where the
spline function alters its polynomial degree. This chapter is dedicated to navigat-
ing the intricacies of choosing these cutpoints, which is a delicate balance aimed at
achieving a model that is both robust and interpretable.

Restricted cubic splines, an extension of cubic splines, are particularly noteworthy
for their ability to reduce the risk of overfitting at the data’s boundaries by enforc-
ing linearity beyond the outermost knots. The cutpoints imbue the spline with its
flexibility, enabling it to model complex relationships. However, this flexibility is a
double-edged sword, as too many cutpoints can lead to overfitting, capturing noise
rather than the underlying relationship, while too few can oversimplify the model,
obscuring important data characteristics. Thus, selecting the optimal number and
placement of cutpoints is crucial, necessitating a careful consideration of flexibility
against parsimony.

Several strategies exist for setting cutpoints, ranging from default methods
provided by statistical software, which often place cutpoints at quantiles of the
predictor distribution, to more data-driven approaches. These approaches might
involve exploratory data analysis (EDA) to visually identify changes in the relation-
ship or derivative-based techniques to find significant variations in the rate of change.
Additionally, domain knowledge can inform cutpoint placement, particularly in fields
like biomedicine where established clinical thresholds can serve as natural cutpoints.
Moreover, cross-validation offers a rigorous method to ascertain the best configura-
tion of cutpoints by minimizing prediction error across different data splits.

Implementing restricted cubic splines and deciding on cutpoints involves practical
considerations, including the choice of software and the balance between model com-
plexity and interpretability. Most statistical packages provide tools for spline imple-
mentation, allowing for flexibility in cutpoint specification. However, it’s important
to remember that increased cutpoint numbers, while potentially improving model fit,
also make the model more complex and harder to interpret for those without statisti-
cal expertise.

To illustrate the application of these concepts, consider a study exploring the rela-
tionship between body mass index (BMI) and diabetes risk. By employing restricted
cubic splines and setting cutpoints at clinically significant BMI thresholds, research-
ers can flexibly model the potentially nonlinear increase in diabetes risk with BMI.
Such an approach not only enhances the model’s accuracy but also aids in interpreting
complex relationships, ultimately guiding interventions and patient counseling
strategies based on nuanced understanding of the data.
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In summary, the process of setting cutpoints for restricted cubic splines is a
nuanced endeavor that blends statistical techniques with domain-specific knowledge
and practical considerations. This careful balancing act ensures the development of
models that not only accurately reflect complex relationships within the data but are
also accessible and interpretable to a broader audience, thereby maximizing their
utility and impact.

9. Applications in the literature: author’s own use of linear-models,
splines, and machine-learning in a variety of contexts with explanation

Linear models have the benefit of being easy to compute and having the easiest
interpretation with a slope, and can be easily applied in a variety of contexts, from
mass evaluation of covariates to understanding how different variables change
overtime [25, 35, 50-54]. Linear model type extensions such as survival analysis make
use of similar interpretation for slopes. Machine-learning has benefits of being able
to generate strong predictions [24, 26, 37, 55-59]. Additionally, with the addition of
methods such as shapely additive explanations, machine-learning has been able to
have easily to understand explanations to understand covariates. When combining
both of these methods together and balancing their benefit, we are able to achieve this
through splines [25, 36, 52, 53, 57-61]. This is present through application of sections
1-7 to generate accurate models, as can be shown when evaluation of splines through
rigorous analysis to understand how to set cutoffs in a practical application such as
with vitamin E cutoffs [24, 54-56].

10. Conclusion

Splines significantly enhance the predictive modeling landscape by providing the
flexibility to model nonlinear relationships, a feature often missing in linear models.
This flexibility is crucial for accurately capturing the nuances of real-world data
across various domains. By dividing data into segments and applying unique polyno-
mial equations to each, splines adeptly reveal hidden patterns within the data. This
characteristic is invaluable across numerous fields, such as epidemiology, financial
analysis, and environmental studies, where a deep understanding of variable interac-
tions is key to making precise predictions. Additionally, the judicious placement of
knots within the data allows for refined adjustments to the model, striking an optimal
balance between avoiding overfitting and underfitting, thus bolstering the model’s
predictive power while maintaining clarity and interpretability.

Simultaneously, machine learning has transformed predictive modeling through
its sophisticated algorithms that glean insights from data, uncovering intricate
patterns and relationships. Capable of processing and learning from vast datasets,
including unstructured data like images, text, and sensor data, machine learning
has broadened the horizons of predictive modeling. Its application across various
sectors—from financial trend prediction and healthcare outcome forecasting to
personalized e-commerce experiences—demonstrates its versatility and capability
to deliver highly accurate predictions. The iterative improvement of predictions
with new data, facilitated by techniques like regression, classification, and neural
networks, allows machine learning models to remain relevant in ever-changing
environments.
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The integration of splines and machine learning into predictive modeling offers a
comprehensive toolkit for data analysts. While splines provide a detailed and inter-
pretable model of nonlinear relationships, machine learning offers unparalleled pre-
dictive accuracy across complex datasets. This synergy between the two approaches
furnishes the predictive modeling field with tools that are not only adaptable and
precise but also interpretable, meeting a wide array of analytical needs. Consequently,
the combination of splines and machine learning propels the advancement of data
analysis, catering to both the requirement for deep understanding and the demand for
predictive accuracy across various disciplines.

In conclusion, the journey from the foundational principles of splines through to
the practical considerations of their implementation encapsulates a broader narrative
on the progression of statistical methods in research. It underscores the ongoing need
for methods that can adapt to the complexity of data while providing insights that
are both accurate and interpretable. As we continue to push the boundaries of what is
possible with data analysis, the thoughtful application of splines and similar tech-
niques will remain a crucial part of the statistical toolkit, bridging the gap between
theoretical models and the multifaceted reality they seek to explain. In this way, the
exploration of splines not only enriches our understanding of data but also empowers
researchers to uncover deeper truths within their fields of inquiry, demonstrating the
enduring value of marrying complex mathematical models with the nuanced intrica-
cies of the natural world.
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1. Introduction and history

Matrices historically began as rectangular arrangements of numbers, although
currently their elements are not necessarily numbers and they are not necessarily
rectangular either. Indeed, in Analysis, there are matrices such as the Jacobian or the
Hessian whose entries are not numbers but functions [1]. Regarding its rectangular
shape, this is not always true, for instance, there exist triangular-shaped matrices
(also called tables), which have their theory and close relationships with other areas
of mathematics [2].

Since ancient times, these mathematical objects have been fundamentally linked
to the study and resolution of linear systems of equations. They appeared in ancient
Chinese writings [3] dating back more than 2200 years. Moreover, some magic
squares have been known for over 25 centuries [4].

That is to say, it seems that its origin is closely linked either to the simultaneous
resolution of linear equations or to certain mathematical curiosities, mainly with
recreational interests.

2. Importance and applications of matrices

As usually happens, mathematical objects widely overtook those that could have
been their initial purposes, and the matrices are precisely one of the most paradig-
matic examples of this phenomenon. In fact, matrices have invaded practically all
areas of mathematics.

In Linear Algebra, several of the most important methods for solving linear
systems of equations, such as the Gauss method, Gauss-Jordan, or using the inverse
matrix, are ultimately matrix methods. In addition to the above, the matrices have an
obvious connection with linear transformations, quadratic forms, bilinear applica-
tions, and determinants, and they play a fundamental role in some processes such as
diagonalization, Cramer’s method, orthogonal diagonalization, and change of basis in
finite-dimensional vector spaces [5]. Besides, some algebraic objects such as perma-
nents, minors, characteristic polynomials, and the trace of a matrix, among others,
are also defined from matrices.

In mathematical analysis, matrices also play an essential role, and it is enough to
mention a couple of well-known examples—the Jacobian J ; and the Hessian H ; —and
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their importance in the search and classification of relative extremes of a given func-
tion of several variables, the chain rule and the Taylor expansion, among many other
applications [6].

In several branches of Geometry, matrices are also very important. For instance, in
Geometry in R? and R’, matrices are used to represent rigid movements (rotations,
translations, symmetries, etc.); also they are relevant in the study of conics and quad-
rics. Matrices also provide simple methods to perform some operations between vec-
tors in the space R’, as s the case of the vector product and the mixed product, which
also have intrinsic meanings and geometric applications. In Differential Geometry,
the vector product—along with the scalar product—has a primary role in the defini-
tion of the of the Frenet Trihedron’s vectors and in the Fundamental Theorem of
the Theory of Curves [7]. It should be noted that in the proof of that theorem, the
involved matrix relates the derivatives of the tangent, normal and binormal vectors
with those same vectors of the aforementioned trihedron.

In the theory of Ordinary Differential Equations (ODE), matrices naturally appear
in first-order linear ODE systems. If the given ODE system is homogeneous, it is
enough to put it in its matrix form, thatis X'=A.X and its solution will be of the
form X(¢)=exp(#A).X, being the vector X, corresponding to the initial condition.
In other words, any homogeneous linear ODE system is solved by using the exponen-
tial of matrices [8]. It is important to note that they also could be solved by decoupling
the system through a diagonalization process or semi-decoupling it using Jordan’s
Canonical Form (in case the system’s matrix is not diagonalizable).

If a non-homogeneous linear ODE system is considered, one of the most typical
methods is the constants variation method, or indeterminate coefficients method,
which again uses matrices, particularly the Wronskian matrix W(¢) and its determi-
nant W(t).

Additionally, another alternative approach for homogeneous and non-homoge-
neous linear ODE systems is to solve it by using Laplace Transform [9], which con-
verts the ODE system into a linear system of algebraic equations, so once again, it can
be solved by matrix methods.

If we consider the Numerical Methods, matrices are also very relevant. For
instance, in Numerical Linear Algebra, the Jacobi and Gauss-Seidel methods are in
fact matrix methods [10]. If the given system of equations is non-linear, one of the
fundamental methods is Newton-Raphson, which works with matrices, in particu-
lar with the already mentioned Jacobian Matrix. In a different area of Numerical
Methods, when solving second-order EDPs, both parabolic and hyperbolic, it usually
appears tridiagonal matrices both in the finite difference methods (Euler explicit and
implicit, Crank-Nicolson and others) as in finite element methods based on piecewise
linear functions with a compact support. On the other hand, when discretizing ellip-
tic equations—specifically when solving the Poisson equation by a method of finite
differences of second order on an equally spaced mesh—the resulting matrix is much
more complicated and is made up of tridiagonal submatrices surrounded by copies of
the identity matrix. In short, beyond the complexity of the matrices, all these meth-
ods lead to linear systems of algebraic equations or linear ODE systems, depending on
the methodology followed.

As it can be expected, also in Probability, Statistics, Experimental Design and
Stochastic Methods, the matrices are fundamental. Some examples of the previous
statement are the Normal Equations in Linear Regression [11], the Latin and Greco-
Latin Squares in Experimental Design [12] and the Stochastic Matrices in Markov
Chains [13], among many others that could be mentioned.
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In Discrete Mathematics, matrices also have a lot to say. As an example, in graph
theory, matrices are used to represent a given graph through its adjacency matrix.
Moreover, the positive powers of that matrix provide the number of paths of a certain
length between two given vertices [14]. Another example in Discrete Mathematics
is related to the study of functions and relations. Indeed, the transitive closure of a
relation can be carried out by means of the Warshall algorithm [15], which is nothing
more than a matrix method. A concrete application of the latter involves obtaining the
minimum equivalence relation that contains the given relation, that is, the so-called
equivalence closure.

All of the above shows only some of the best-known examples of matrices’ appli-
cations in different branches of mathematics.

Taking into account that Matrix Theory transversally crosses almost all other
branches of mathematics, it is not surprising that matrices also make their appearance
in nearly all scientific disciplines.

Hence, for example, in experimental sciences such as Chemistry, Physics and
Biology, matrices have a relevant role. In Chemical Kinetics, for example, certain
special matrices appear associated with the chemical mechanisms consisting of first-
order reactions (so-called FOCKM-matrices) [16]. Something similar happens with
mixture problems, which are modeled by first-order ODE linear systems, giving rise
to other types of matrices (so-called MP-matrices) [17].

Similarly, it happens in the social sciences. For example, in Economics, the so-
called payment matrices are used that report profits or losses associated with certain
situations [18]. Matrices are also utilized to optimize economic variables by linear and
non-linear programming methods [19]. Another example takes place in Sociology
where directed graphs are used to study relationships among large groups of individu-
als which in turn are represented by adjacency matrices [20]. In Education, when
applying didactic analysis, the different variables can be encoded in Boolean form (by
using zeros and ones, indicating the presence or absence of a certain characteristic)
which can then be used as the feed for cluster analysis [21].

It is worth mentioning that various disciplines apply the design of experi-
ments and the subsequent treatment of data, to different experimental sciences
like Chemistry or Biology, and Economics, Sociology and Psychology among the
social sciences. These mixed disciplines are called Chemometrics, Biometrics,
Econometrics, Sociometrics and Psychometrics, respectively. In a first approach,
it might seem that all of them are basically the same applications of Statistics and
Experimental Design to different areas of knowledge; however, the shape of the data
matrices in each case is decisive regarding the methods that are preferably used. For
example, in Chemistry, usually, there are just a few samples, or runs, but sometimes
in each of them, the absorbances are measured between 200 and 700 nm, that is, the
data matrix has, for example, a number of rows of one or at most two digits, whereas
the number of columns is around several hundred. So, this gives a data matrix having
arectangular shape with a wide base and low height, whereas in the social sciences,
usually, exactly the opposite happens. For instance, in order to predict the vote of the
population in a presidential election, several thousand citizens should be interviewed,
and at the same time, the variables usually considered are very few: gender, age,
education level, income level, place where the person lives and perhaps one or two
more. Consequently, the data matrix will have hundreds or even thousands of rows,
but just a few columns.

Due to these facts, the shape of the data matrix—as a rectangle with a wide
base and low height or a narrow base and an important height—will determine the
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methodological choice. For instance, if the researcher has a small number of experi-
mental runs, the asymptotic properties of the estimators are almost irrelevant, mak-
ing it more desirable to use unbiased or minimum variance estimators. In conclusion,
these disciplines—for example, Chemometrics and Sociometry—both use statistical
and experimental design methods, although they differ in the selection of the meth-
ods to be applied and this is mainly due to the different shapes of their data matrices.

Thus, if matrices play an important role in almost all branches of mathematics
and scientific disciplines, it is not surprising to observe that they are also extremely
relevant in engineering and technology due to their applications. Just to mention a
few examples, the matrices have been used to optimize a drug manufacturing pro-
cess [22], the treatment of atmospheric corrosion data [23], image processing [24]
and to study and improve the production of a protein for immunodiagnostics [25],
just to mention a few previous experiences where matrices have been successfully
utilized. Matrices also have applications in graphic design, route planning, computer
animation, data analysis and machine learning, facial recognition, cryptography
and cybersecurity, financial analysis and risk management and portfolio evaluation,
among many other applications [26].

In a few words, matrices are among the most useful existing mathematical tools.
As an example, it is enough to mention that there are estimates that suggest that more
than 75% of scientific, industrial or engineering problems involve, at some stage, the
resolution of a linear system of equations [27], which in turn is just one of the many
matrix applications.

Consequently, due to the importance of matrices and their enormous applicability
in science, engineering, economics and industry, among other areas, a permanent
update on this topic is essential. This update needs to reflect the advances in Matrix
Theory and its applications in the most diverse disciplines.

These have been the main ideas when proposing this volume: updating the subject
theoretical aspects and at the same time, providing new research in different areas
that complement our knowledge about the immense range of applications of Matrix
Theory.
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Chapter 13

Eigenvalues of Matrices in
Chemical Kinetics and Their
Algebraic and Geometric
Multiplicities

Victor Martinez-Luaces

Abstract

Every mechanism or system of chemical reactions gives rise to a system of ordinary
differential equations when the variation of concentrations with respect to time is
studied. Furthermore, if such reactions are all first-order kinetic reactions, then a linear
system of differential equations is obtained and its associated matrix has special prop-
erties. In particular, the matrix eigenvalues and their algebraic and geometric multi-
plicities determine the form of the solutions as well as their qualitative behavior. In this
chapter, the theoretical nine possible cases are analyzed, and it is proved that all but
one can occur experimentally, and examples are provided. For those eight cases that
can take place, the stability and asymptotic stability of the solutions are studied.

Keywords: chemical kinetics matrices, eigenvalues, algebraic multiplicity, geometric
multiplicity, stability of ODE systems

1. Introduction

There is a very important relationship between mathematics and chemistry [1, 2],
particularly when modeling chemical problems using ordinary differential equations
(ODE) and ODE systems [3, 4]. When the kinetics of any mechanism formed by
chemical reactions is studied, the corresponding mathematical model gives rise to a
differential equation or a system of differential equations, depending on the number
of species involved [5-7]. The simplest example occurs when a chemical species S;
gives several products Py, P, and so on, in such a way that the reaction rate is directly
proportional to the remaining concentration of the reactant S;. This situation is illus-
trated in Figure 1.

The mathematical model corresponding to this first-order chemical kinetics
problem is

dafsi
I —k[S1] (1)
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5,—— R+R+-

Figure 1.
First-order chemical reaction.

S, ——=S,

Figure 2.
Opposed reactions.

s,—¥—>35,—*—> s,

Figure 3.
Consecutive reactions.

where [S;] is the concentration of the species Sy, ¢ is time, and k is the kinetic
constant of the reaction.

A more interesting situation occurs if two chemical species S; and S, are present,
such that S; is transformed into S, by means of a first-order chemical reaction
(FOCR), with kinetic constant K and, at the same time, S, is transformed into S; by
another FOCR with kinetic constant k, as is shown in Figure 2.

In this case, we have a first-order chemical kinetic mechanism (FOCKM), which
consists of a set of reactions, all of them being FOCRs. This new problem gives rise to
the following ODE system:

s _ —K[Sy] + kI[S,]
dc ! B A (B (K kS

We will call FOCKM matrix

-K k
B ( K —k) 3)
to the ODE system associated matrix, whose eigenvalues and eigenvectors can be
easily computed as 4y = 0, 1, = —K — k and 1= (k K), vy = (-1 1).

In other words, this case—known as opposed reactions (see [7])—gives rise to a
couple of different eigenvalues (each with algebraic multiplicity one) and two one-
dimensional eigenspaces (i.e., each with geometric multiplicity one).

Now suppose that a chemical species S; produces another chemical species S, and
this in turn gives S;. In this case, we have consecutive reactions (e.g., [7]), which is
illustrated in Figure 3.

Hence, the corresponding mathematical model is

diSi] _ _

prale K[Sl] ., [Sl] -K 0 0 S1

di‘z} K[Si] —k[S) or | [S] | = | K —k 0] [S)] @
@_k[s] S; 0 k O [S3]
e~ 7
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K k
S,/ S, S,— S,
Figure 4.
Competitive reactions.
In this case, the FOCKM matrix is
-K 0 O
A=| K -k 0], (5)
0 k 0
and since it is a lower triangular matrix, its eigenvalues are 4; = —K, 1, = —k, and

A3 = 0. Since all are simple eigenvalues, it results in AM,, = 1,7 =1,2,3, and
GM), = 1,i = 1,2, 3; that is, all the algebraic and geometric multiplicities are one.
Moreover, it is easy to obtainv; = (k—K K —k),0=(0 -1 1)and
v3=(0 0 1), the corresponding eigenvectors.

The last case to be analyzed in this introduction is the one that occurs when a
chemical species S; gives S, and at the same time, in parallel, S; also gives S3. These are
called competitive reactions (see [7]) and can be illustrated as in Figure 4.

In this case, the ODE system is the following:

d[S
1S4 _ —(K +k)[S1]
at . L[ —~(K+k) 0 0\ [[si]
% —Kis) o || =] Kk ool 6)
diss) - [S3] k 0 0/ \[S3]
d !
In this case, the FOCKM matrix is
-K—-k 0 O
A= K 0 o]f. 7)
k 0 0
Once again, it is a lower triangular matrix, so its eigenvalues are 4 = —K — k,

A2 =0, and 43 = 0, with AM,, =1 and AM,_ = 2. The corresponding eigenvectors
are in thiscasev; = (-K —k K k),0,=(0 1 0)andvs=(0 0 1),s0once
again, the FOCKM matrix is diagonalizable.

In all the cases seen so far, all the eigenvalues are nonpositive real numbers; they
can be single or double, and the FOCKM matrix is always diagonalizable. We will see
which of these properties can be proven in general and which cannot, beginning by
revisiting some results from previous works [8-10].

2. Some previous results revisited

If we consider again the previous FOCKM matrices,
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K k
A= , 8
(¢ %) ®
-K 0 O
AN=| K -k 0], 9)
0 k0
and
K-k 0 O
A = K 0o o}, (10)
k 0 0

it is easy to observe that all non-diagonal entries of a given column are nonnegative
(i.e., a;; >0,Vj # i) and the diagonal entry is the sum of all these elements, multiplied
by a factor (—1) (i.e., a11 = —Z#ﬂi,l,ﬂz,z = —Zi#ai,z, sy = _Z#nﬂi,n ).

The following theorem formalizes and generalizes this result:

Theorem 1.

The general form of a FOCKM matrix is as follows:

—01 e al)n
ﬂn,l ves —0y
with
o1 = Zﬂi,b s Op = Zai,rr (12)
i1 i£n
Proof:

If we consider » chemical species S1, Sy, ..., S, such that S; is transformed into S; by

kij . N . . .
an FOCR S; = Sj, kij being the kinetic constant of this reaction, then all the possible
reactions can be schematized as shown in Figure 5.

k1 .
In this diagram, if there is no reaction S; = S;j, then we consider k;; = 0.
The ODE corresponding to the concentration of the species S; can be written as:

d[S
% = —k1[S1] — k13[S1] — ... —k1.[S1] + k21[S2] + k31[S3] + ... +Eu[S,]  (13)
S,—t=—>s, s§*os, . s§Xg,
Sz = 81 Sz - Sa Sz - S.
Sn K S1 S“ K. S2 S Koos S“_1
Figure 5.

All the possible reactions between n chemical species.
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This ODE can be written as:

6% = —(k12 +kiz+ ... + kln)[Sﬂ + kzﬂSz] + k31[83] + ... + knl[Sn] (14)

Following the same procedure, we obtain:

d[S]
dt

= klz[sl] - (kzl + ko3 + ... + kzn)[Sz} + k32[S3] + ... + knz[sn} (15)

d[S,]
dt

= kln [Sl] + an [82] + ...+ kn—ln [Snfl} - (knl + an + ..+ knnfl)[sn] (16)

The ODE system can be written as:

d [Sl] —(k1z + k13 + ... + kln) knl [Sl]
g : = : : :
[Sn} k1, _(knl +kp+ ... + knn—l) [Sn}
(17)

And it is easy to observe that formula (17) corresponds to the form given by matrix
A in Eq. (11) with a different notation. Then, the theorem is proved.

Corollary 1.

The determinant of an FOCKM matrix is zero.

Proof:

Since the general form of an FOCKM matrix is

—0q a1y
A= &+ =~ (18)

ﬂn,l “ee —0y

and

01 = Zﬂi,l, e s Oy = Z“’?"’ (19)

i1 in

thenrow 1+ row 2 + ... +rown = 0, which can be written as

rown = —row 1 —row 2 — ... —row(n — 1). Then, the corollary is proved.
Corollary 2.
For any FOCKM A, 1 = 0 is one of its eigenvalues.
Proof:

It is obvious, since det(A) = 0.
For the proof of the following result, we will use the Gershgorin’s circle theorem
[11], which establishes that the eigenvalues 4; of a matrix A lie within the union of

disks iL:JI D; , D; being the disk of center a;; and radius R; = Zj i ]aji , that is, the sum of
the modules of the non-diagonal elements. The theorem can be applied to AT, and in
that case, the Gershgorin’s disks correspond to the columns of matrix A [11]. We will

use this last version of the theorem.
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Theorem 2.
—61 - aig
Let A = oo be an FOCKM matrix and let 4, be an eigenvalue of A.
dny -+ —0p
Then, 4 € J._;D; , D; being the disk of center —o; and radius o;.
Proof.
—61 - ain
Since A = i~ i |, the Gershgorin’s disk corresponding to the first
ap1 0 O

column is D; D; being the disk of center —o; and radius
lan| + |asi| + .. |an| = Zj;&l’ajll = Zj;ﬂajl = 01. The same happens with all the other
disks, and the theorem is proved.

Figure 6a shows one of these Gershgorin’s circles, and Figure 6b shows a diagram
of the union of all those disks.

Taking into account the previous results, the following corollary results.

Corollary 3.

If 4 is an eigenvalue of A, then Re (4,) <0 and Re (4) = 0 if and only if 4, = 0.

Proof.

Immediately results from looking at Figure 6, since the union of disks is contained
in the negative complex half-plane and is tangent to the imaginary axis at z = 0.

3. The possible cases for the eigenvalues and their multiplicities

In principle, there would be three possible cases for the eigenvalues of an FOCKM
matrix: (1) 4 = 0, which is always one of the FOCKM matrix eigenvalues; (2)
A = a <0, which appeared in several examples analyzed in the introduction section;
and (3) 1 =a +ib, witha <0 and b # 0, which we will see later that it is also possible.

Concerning the multiplicities (algebraic and geometric), we have seen examples of
single and double eigenvalues, and in the latter case, AM; = GM, , at least in those
introductory examples.

Taking into account all the previous results, there would be—at least potentially—
nine cases to study, as can be seen in Figure 7.

We will study all these nine cases, which implies posing a double inverse problem:

(@) (b)

Figure 6.
a. One Gershgorin’s circle. b. Diagram of the union of all the Gershgorin’s disks.
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A=0 A=a<0 A=atib

Simple i i iii
MA = MG iv v vi

Multiple
MA £ MG | vii viii ix

Figure 7.
The nine cases to study in FOCKM problems.

A.Given an eigenvalue 4, with algebraic multiplicity AM, , and geometric
multiplicity GM,, , is it possible to find an FOCKM matrix A, which has this
eigenvalue with the given algebraic and geometric multiplicities?

B. Once the matrix A is found, if it exists, is it possible to find a set of chemical
reactions that correspond to it?

We will study both inverse problems for the nine cases described in Figure 7.
Case i. Simple eigenvalue 1 = 0.

This case occurs, for example, when there are opposed reactions (see Figure 2).
Specifically, in the example mentioned in the introduction section, the FOCKM

matrix was
-K k
A= , 20
( K —k) (20)

whose eigenvalues are 4; = 0 and 4, = —K — k, both being simple eigenvalues.
Case ii. Simple eigenvalue 1 =a <0

Once again, the example of the opposite reactions serves to illustrate this situation,
since the FOCKM matrix eigenvalues are 4y = 0 and 4, = —K — k, the second one
being a negative simple eigenvalue.

Case iii. Simple eigenvalues A =a +ib,a <0,b # 0

In Figure 8, an FOCKM involving five chemical species is depicted by a directed
graph. The numerical values of the kinetic constants are also included.
The corresponding ODE system is:

S
// : K.=1
Kiu=2
Ku=2
S1 83 Ku=1
Klz=
\\\" Ks=2
S,
85
Figure 8.

Reactions involving chemical species S,, S,, Ss, S, and S.
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diS1] _ —(142+1+42)[S4]
dt
N
I 115, - 2155 + 1154
d[s
P 2is1) + 215 - 118 @y
d[s
Ehj‘] = 1[Sy] + 1[S3] — 1[S4]
d[Ss] _
e 2(S4]
And then, the FOCKM matrix is:
-6 0 0 0
1 2 0 1 0
A=]2 2 -1 0 (22)
1 0 1 -10
2 0 0 0 0

The eigenvalues are 4y = —6, 4, = 0, 43 =0, A4 = =244, and 45 = —2 — i, so sim-
ple complex eigenvalues A =a +ib,a <0,b # 0 can occur, at least theoretically.

Case iv. Multiple eigenvalue 1 = 0 with AM, = GM,, .

The example of competitive reactions serves to illustrate this situation (Figure 4).
As it was observed, the FOCKM matrix is

-K—k 0 O
A= K 00 (23)
k 0 0
and its eigenvalues are 4y = —K — k, 4, = 0, and 43 = 0. If we consider the double

eigenvalue 4,3 = 0, we can obtain two independent associated eigenvectors v, =
(0 1 0)andv3=(0 0 1),andso, AM;_q =2 = GM,_ . Then, this case in
theory can occur.

Case v. Multiple eigenvalue 1 = a < 0 with AM, = GM;, .

Let us consider a set of reactions involving chemical species S, S», S3, S4, and Ss,
illustrated in Figure 9. In Figure 9 presents a directed graph that schematizes all the
FOCRs involved.

If b1y =1, k14 = 1, ky3 = 1, and k4s = 1, the corresponding ODE system is:

3 Ke=1 Ku=1
81 Ki=1 K=

S,— S,

Figure 9.
Other reactions involving chemical species S,, S,, Ss, S, and S.
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dafsi]
7——(14‘1)[51]
d[S
M _ 115 - 118,
d[Ss] (24)
daS
£it4] = 1[Sy] — 1[S4]
d[Ss]
g~ US4
And then, the FOCKM matrix is:
-2 0 0 0 O
1 -1 0 0 O
A=l 0 1 0 0 O (25)
1 0O 0 -1 0
0 0O 0 1 O

The eigenvalues are: 4y = 0, 4; = 0, 43 = —1, A4 = —1, and 45 = —2. Then, there isa
double negative eigenvalue 434 = —1, and its associated eigenvectors are

v3=(0 00 1 —1)andvs=(0 1 —1 0 O0).Then, this case with a multiple
eigenvalue A = —1and AM; = GM, = 2 occurs.

Case vi. Multiple eigenvalues A = a £ib,a <0,b # 0 with AM; = GM,.

In order to exemplify this case, we can adapt the diagram of Figure 8 by “dupli-
cating” the subgraph that corresponds to the chemical species S1, S, S3, and S4. The
result can be observed in Figure 10, which presents a directed graph that schematizes
all the FOCRs involved.

Ifk1] = 1V] =2,3,..,8, k23 =2, k34 =1, kyp =1, k56 =2, k67 =1, and k75 =1, the
corresponding ODE system is:

S,

;

:S5
s;/
\
S

Sg 7

/

Figure 10.
Reactions involving eight chemical species.

249



Nonlinear Systems and Matrix Analysis — Recent Advances in Theory and Applications

”%: A1+ 14141+ 1+1)S]
d[S;]
—= 1[S1] — 2[S2] + 1[S4]
d[Ss] _
d_; = 1[S1] + 2[S] — 1[S4]
d[S.]

o = 181] + 1[5] — 1[S4] (26)

ZIN
] 115 - 2155 + 2157
t
7N
el _ 115,] + 2154] - 115/
t
d[S
I 115, + 115 - 1159
t
d|[Ss]
=1[S
i~ 1S
And then, the FOCKM matrix is:

-7 0 0 0 0 0 0 0
1 -2 0 1 O 0 0 O
1 2 -1 0 O 0 0 O
1 0 1 -1 0 0 0 0

A= (27)
1 0 0 0o -2 O 1 0
1 0 0 0 2 -1 0 O
1 0 0o O 1 -1 0
1 0 0 0 O 0 0 O

The eigenvaluesare y = -7, l, = —2+i, A3 = —2+i4, 44 = -2 —i, s = -2 —1,
A6 = 0,47 =0, and g = 0. Then, 4,3 = —2 +i and 145 = —2 — i are both double
complex eigenvalues, and their associated eigenvectors are

pu=(0 00 0 —i—-1+4+i 1 0),

1=(0 —i -14+i 1 00 0 0),

v4=(0 00 0 —i—-1—-i 1 0),

vs=(0 i -1—-i 1 00 0 0). (28)
So, this example shows that multiple complex eigenvalues 1 = —2 + i with AM, =

GM, are possible in FOCKM matrices.

Case vii. Multiple eigenvalue 1 = 0 with AM; # GM,;.

In a previous work [10], it was shown analytically that this case is not possible. The
proof is based on the study of the solutions of the ODE system corresponding to the
FOCKM matrix, which are unbounded if AM;_q # GM,_¢, and this result is nonsen-
sical if we are considering concentrations of chemical species.
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In the next section, we will give a pure algebraic proof of such an impossibility,
which is independent of the interpretation of the solutions [S;](¢) as concentrations of
chemical substances.

Then, this case cannot occur.

Case viii. Multiple eigenvalue 1 = a < 0 with AM, # GM,.

Let us consider again the case where a chemical species S; produces another
chemical species S, and this in turn gives S3 (consecutive reactions), illustrated in
Figure 3. As a particular case, if the two kinetic constants were equal, that is, K = &,
then the corresponding mathematical model is

d[Si]

= —K]|S
dt 1S1]
AN
diSal _ K[S1] — K[Sy] » (29)
dt
d[S]
— =KIS
dt 2]
The FOCKM matrix is
-K 0 O
A=| K -K 0|, (30)
0 K 0
and since it is a lower triangular matrix, its eigenvalues are 4 = —K, 1, = —K, and
A3 = 0. So 41, = —K is a negative double eigenvalue, and there exists only one inde-
pendent eigenvector v12,=(0 1 —1),associated to A1, = —K. Then, this case with

a negative eigenvalue A being AM; # GM, occurs.

Case ix. Multiple eigenvalues 1 = a +ib,a <0,b # 0 with AM, # GM, .

For this last case, we consider six chemical species S1, Sz, S3, S4, S5, and Sg, and the
reactions among them can be observed in Figure 11, which presents a directed
multigraph that schematizes all the FOCRs involved.

Ifklz = 5/3, k23 = 5/3, k31 = 13/15, k32 = 4/5, k41 =1, k45 =1, ksz =1, k56 =1,
kes =1, and kgs = 1, the ODE system is

&

18

\
S, \'S

3

Figure 11.
Reactions involving six chemical species.
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‘% _ _g 1S4] + 1—2 [S3] +1[S4]
o =St - 3o + Sl + 154
% - g [S] — g [S5] + 1[Se] (31)
di‘d — 2[S4] + 1[Se]
% = 1[S4] — 2[Ss]
di"’] = 1[Ss] — 2[Sq]

And then, the associated FOCKM matrix is:

~5/3 0 13/15 1 0 0
53 —5/3 4/5 0 1 0
a_| 0 53 53 0 0 1 )
0 0 0 -2 0 1
0 0 0 1 -2 0
0 0 0 0 1 -2

The characteristic equation is A(4 4 1)[A> + 51+ 7| ? =0, and so, the eigenvalues
arely =0, b =-1,13=3(-5+iv3), 44 =3(-5+iv3), s =3(-5-iv3), and
J6 =3 (=5—1iv/3). Then, there is a couple of double complex eigenvalues 134 =
1(-5+1iv3) and, 456 =3 (=5 — iv/3 ), and their associated eigenvectors are
— 1 1

= _—(-5—4 — (- j 0 0 O d
’ (10( 5-i3v3) g5 (-s+3v3) 1 >an
— 1 . 1
w = <E (-5+3v3) 15
complex eigenvalues A3 456 = 3 (—5+iv/3) with AM; =2 # GM, = 1.

(—5 - i3\/§) 10 0 O > Then, in this case, we have

4. An algebraic proof of the impossibility of the case vii

The main idea of this section is to show that for any FOCKM, the null eigenvalue
A =0 always has the same algebraic and geometric multiplicity (i.e.,

AM;_o = GM;_), which makes case vii of the previous section impossible to
take place.

For this purpose, we will analyze an example that is an adaptation of the one
considered in Figure 9. The new version of this example includes opposed reactions,
and it is shown in Figure 12. All the reactions involved are schematized through a
directed multigraph.
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S,/ S,
S,

S,/—— S,

Figure 12.
Reactions involving five chemical species.

The corresponding ODE system is:

diﬂ — —(kps + k14)[S4]
‘% — ko[S1] — kas[Ss] + kalS3]

‘ﬂs] — kens[So] — esa[S3] )
diﬂ — Rna[S1] — Kas[Sa] + ks S5]

”% — Jeas[S4] — s [Ss]

And then, the FOCKM matrix is:

—k1y — ks 0 0 0 0

k1, —kaz k3 0 0
A= 0 ky —kzxp O 0 (34)
k14 0 0 —kas  ksy
0 0 0 kas  —ksy

It is easy to observe that this matrix has rank » = 3, so there must be two rows that
can be written as linear combinations of the others. In fact, it is possible to write:

YOW1 = —rOW, — YOW3 — YOW4 — FOWs (35)
and
k1, k1,
rOW) = —rows3 + —row4 + —rows. (36)
k14 le14

It should be noted that if the Eq. (36) is replaced in Eq. (35), then both row; and
row, can be expressed as linear combinations of the other rows (i.e., 7ows, row,, and
rows). For this example, we do not need to perform these operations.

Utilizing the dimension theorem [12], we can write:

n = dim(KerA) + rank(A), so we have dim(KerA) = 5 — 3 = 2 and with
Ker[A — 0I] = 2, it results in GM;_g = 2.
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Now, to analyze the algebraic multiplicity, we consider the characteristic equation:

—kp—ku—i 0 0 0 0
k12 —kaz — 2 k3 0 0
0 =det(A —2l) = 0 ka3 —k3 — 2 0 0
k4 0 0 ~k4s — 1 kesa
0 0 0 ks —ksy — A
(37)

The determinant does not change if we add to a certain row a linear combination of
the other rows. Then, we can replace the first row by

row, + row, + rows + rows + rows (38)
and the second row by
k k
row, + rows — 2 ow, — —urows, (39)
fe14 k14

without changing the determinant.

It is important to note that these linear combinations (38) and (39) correspond to

formulas (35) and (36), previously obtained.
The result is the following:

R - —
k12 k1
0o -1 -2 —A —A
k14 k14
0=10 kyy —kp—4 O 0 (40)
ks O 0 —k4s — A kes4
0 0 0 kis  —ksy — A
One A can be extracted from each of the first two rows, obtaining:
-1 -1 -1 -1 -1
5 k14 k14
0=210 ky —kp-2 0O 0 (41)
kis 0 0 —k4s — 4 kess
0 O 0 kas —ksq — A

Thus, this new version of the characteristic equation will have 1 = 0 as a double

root, and then, AM,_¢ = 2.

These same ideas can be generalized, obtaining the following theorem:

Theorem 3.

In any FOCKM matrix, the null eigenvalue (4 = 0) has the same algebraic and
geometric multiplicity (i.e., AM;—o = GM,—o).
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Proof.
—01 al)n

Let us consider an FOCKM matrix A = S ¢ |, with rank(A) = 7.
apy . Oy

By using the dimensions theorem, we can write n = dim(KerA) + rank(A) [12], so

we have dim(KerA) = n — r and then GM,_o =n — 7.
Now, let us consider the characteristic equation:

—01 — y A1p
0 = det(A — AT) = det : : (42)

a1 e =0y — 4

Since rank(A) = r, there are then n —  rows that can be written as a linear combi-
nation of the remaining » rows. Without loss of generality, we can assume that the last
n — r rows can be written as linear combinations of the first » rows, which are linearly
independent. For instance, if j > 7, then we have:

row; = arrows + arows + ... + arow,, (43)

which can be expanded as:

(ﬂj,l j2 .. Ajyy . — Of ...ﬂj,n) = 0!1(—61 a1 ... A1y ... A1 ...ﬂl,n) + .. (44)
+ @ (A1 Ar2 e = Op e rj Uy
Then, we can write the following equalities:
aj1 = —0101 + . Foara

aj’z = a1 + .. + Aydy)

Ajy = 01y + ... — 00y

(45)

—0j = mayj + ... + oa,;

Ajn = A1y + o Ty,

Now, returning to the characteristic Eq. (42), this equality does not change if a
linear combination is added to the j-th row as follows:

rOW; — a1roW1 — QYOWy — ... — QTOW,. (46)
The new j—th row of the determinant is:

(@142 iy . —0j — Aueliy) — a1 (—01 — A1 e A1y oo A1 . 1)

c = (A1 Arp e — O — Ay (47)
So, the first entry of this row is
a1 + a101 + a1d ... — Ay = a1, (48)
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being the last equality, a direct consequence of the first equation of the
system (45).

The same procedure can be applied to the second, third ..., and the »—th entry,
which can be written as

Ajy — Qa1 ... + 00, + Qh = ayd, (49)

where the last equality is a consequence of the »—th equation of the system (45).
If we consider now the j—th entry, we have

—0j — A— alal,j e — O{Vﬂr,]' = —ﬂ, (50)

being the last equality, an obvious consequence of the »—th equation of the
system (45).
Finally, the n—th entry is

Ajp — A1y . — Oy, = 0, (51)

and the last equality is due to the last equation of the system (45).
Taking into account (48), (49), (50), and (51), the new j—th row of the
determinant is

(A d.capd... —20..0) =A (g op...ap... —10..0). (52)

In other words, a A can be extracted for each row, from row, 1 to row,, and it is
impossible to extract more s, since the first » rows are linearly independent.

Then, 4 = 0 is a multiple eigenvalue, with AM,_o = n — r, and this equality ends
the proof of the theorem, since AM;_og = GM,—o =n —r.

The previous theorem—in addition to proving the impossibility of case vii (multi-
ple eigenvalue 1 = 0 with AM, # GM;)—also has important consequences on the
stability of the solutions of the FOCKM problem, as will be seen in next section.

5. About the stability of the solutions to the FOCKM problem

In the previous analysis, we observed that in the FOCKM problem, there are three
types of eigenvalues:

The null eigenvalue 1 = 0, simple or multiple, with AM,_o = GM,_o.

Negative eigenvalues 1 = 4 <0, simple or multiple, with AM, = GM;, or
AM, # GM,.

Complex eigenvalues A = a 4 ib, with 2 <0 and b # 0, simple or multiple, with
AM,1 = GMA OI‘AM,1 75 GM,{.

We start by analyzing the second case, where the solutions corresponding to an
eigenvalue A = a < 0 are linear combinations of {e“t, te™ t2e, ... e }, where the
exponent p depends on whether the eigenvalue is simple or multiple and whether
AM; = GM, or not [13, 14]. In any case, the solution will be of the form
(a0 + a1t + aat? + ... + apt?) €, which, regardless of the degree of the polynomial,
satisfies

;}gglo ((xo + ot + ot? + ... + aptp) e = 0. (53)
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In the third case, the solutions corresponding to complex eigenvalues A = a + ib,
with a <0 and b # 0 are linear combinations of
{e** cosbt,e™ sinbt,t ¢* cosbt,t ¢* sinbt, ...,t1e* cosbt,t1e™ sinbt }, where the expo-
nent q depends on whether the eigenvalue is simple or multiple and whether
AM; = GM, or not [13, 14]. In any case, the solution will be of the form

(a0 + a1t + aat? + ... + ayt1) e* cosbt + (ﬁo + Bt + Bt + ... —l—ﬁqt‘f) ¢ sin bt,

which, regardless of the degree of the polynomial, satisfies

lim (a0 + ont + aot” + ... + ayt?) e* cosbt + (ﬁo + it + ot + ... +ﬁqﬂ) ¢ sinbt = 0.
(54)

Now we are going to consider the null eigenvalue, 4 = 0, which can be simple or
multiple, always satisfying AM;_o = GM,— , due to theorem 3. As a consequence,
only linear combinations of €% can appear, and the general solution for this case is

ape” +a e+ . e =ap+ar+ ... +a, =C. (55)

Taking into account the previous results (53), (54), and (55), it is easy to conclude
that the solutions of the ODE system corresponding to any FOCKM problem will be
stable, but not asymptotically stable (because of the null eigenvalue).

In other words, slight perturbations in the initial conditions of the problem will
cause only slight differences in the solution, but these perturbations do not tend to
disappear over time.

6. Conclusion

In this work, a special type of matrices has been analyzed, those that come from a
linear ODE system, which represents the mathematical model associated with a set of
chemical reactions, all following first-order kinetics law.

These matrices (FOCKM matrices) have a very special format, since all their non-
diagonal entries are nonnegative, and the diagonal elements are equal to the sum of
the other elements in the same column, with the sign changed.

This very particular format gives them certain special properties, such as that all
their eigenvalues have a nonpositive real part and that the null eigenvalue is always
present in the spectrum of the matrix. Moreover, the structure of these FOCKM
matrices determines their algebraic and geometric multiplicity, at least in the case of
the null eigenvalue, where both multiplicities must be the same.

In this chapter, the nine possible combinations of eigenvalues and multiplicities
were analyzed, leading to the main conclusion that all of them are possible except one.

As a consequence of the above, the solutions to any FOCKM problem will be stable.
This fact has an important consequence from the point of view of the original chem-
ical kinetics problem. Indeed, any small error that may occur when weighing the
reagents and/or diluting them in their respective solvents remains bounded, although
—as a general rule—it does not tend to disappear.

Therefore, small errors in the determination of the initial conditions do not dra-
matically affect reactions with first-order kinetics, as if it could occur—at least in the
first approach—in other types of reactions with nonlinear kinetics, which are not
analyzed in this work.
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Chapter 14

Matrices with a Diagonal
Commutator

Armando Martinez-Pérez and Gabino Torres-Vega

Abstract

It is well known that there are no two matrices with a diagonal commutator.
However, the commutator can behave as if it is diagonal when acting on a particular
vector. We discuss pairs of matrices that give rise to a diagonal commutator when
applied to a given arbitrary vector. Some properties of these matrices are discussed.
These matrices have additional, continuous eigenvalues and eigenvectors than the
dimension of the matrix, and their inverse also has this property. Some of these
matrices are discrete approximations of the derivative and integration of a function
and are exact for the exponential function. We also determine the adjoint of the
obtained discrete derivative.

Keywords: commutator between matrices, pair of matrices with diagonal commutator,

exact finite differences derivative, exact finite differences integration, matrices as
discrete operators

1. Introduction

Let us consider the matrices that shift the entries of a vector. The usual matrix that
cyclically shifts the entries of a vector to the left is

010 .. 00
001 .. 00
000 .. 00

Ri=| | (1)
000 .. 01
100 .. 00

Given an arbitrary vector h = (h1, ks, ..., hN)T €C, hj # 0, the action of R; on this
vector results in

Rih = (hy, hs, ..., h, hy)T. )

There is also a matrix that shifts the entries of a vector to the right, the matrix with
the lower diagonal entries different from zero.
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But, we can also use a diagonal matrix to rotate to the left the entries of the vector
h, in particular. The action of the diagonal matrix

ha

h_1 0O 0 O 0
h3
0 E o 0 .. O
ha
R— |0 0 0 . 0 3

hs

O 0 0 — 0
hs4

h1

0O 0 O O —

hn

on his Roh = (hy, ks, ..., hn, hl)T. It is also possible to perform a cyclic rotation to
the right. The action of this matrix on another vector is only to rescale its entries.

Combining the above ideas gives rise to a third type of shifting matrix. There is a
non-diagonal matrix that acts like an identity matrix for the particular vector h:

0 Z—; 0 0 0 0
0 0 Z—i 0 .. 0 0
R—| 0 0 0 Z—j . 0 0 | @)
0 0 0 0 .. 0 h;j;
%V 00 0 .. 0 0

We have that Rzh = h. The eigenvalues of this matrix are the same as those of Ry,
the N roots of unity: 1, = 2Ny —0,1,2, ...,N — 1, and h is the eigenvector that
corresponds to the eigenvalue 1o = 1.

Other special matrices are the matrices that admit a continuous eigenvalue, besides
the usual constant eigenvalues. For instance, the matrix

gu 9 O
Q=10 qn 45 (5)
0 43 93

has eigenvalues ¢,;, 3 (92 + 933 — %), 3 (42 + 933 + %), and the corresponding
eigenvectors are

(1,0,0)", (6)
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< 41 (~qn + 43 +3) _ dn t4:3t= 1>T 7)
%2(2911 —qn _933+Z) , 295, ’ ’
T

< 412(@22_%3 +Z) 9 — 4 t+2 1) (8)
95 (=241y + 400 + 433 +2)° 2q3, )

where, 2z = \/ 44,395 + (420 — q33)2. These are the only eigenvalues and eigenvec-

tors. The eigenvalues are fixed quantities and depend on the fixed entries of the
matrix. However, the matrix

V17T V17T

— 0
V1 =02 V1 =02
0 T _ VT (9)
U2 =103 U2 =03
0 V3T V3T
V3 — V) V3 — 1)
has eigenvalues 0, 7, ;% with corresponding eigenvectors
T T T
(1>1’1) ) (1)1,1)2,1)3) ) (1;030) ) (10)

where the eigenvalue 7 is independent of v;, and viceversa, and it is a continuous
variable.

There is the usual procedure to obtain a set of eigenvalues and eigenvectors [1].
But if the entries of a matrix contain variables, we can solve the eigenvalue set of
simultaneous equations now for the entries of the matrix, obtaining additional con-
tinuous eigenvalues and eigenvectors.

Now, in general, there are no two matrices that have a diagonal commutator [2],
that is, proportional to the identity matrix. We use the above facts about matrices to
define two matrices with a diagonal commutator when applied to an arbitrary vector
h. One of the obtained matrices corresponds to a finite differences derivation of a
function, exact for the exponential function.

2. The matrices

There are many matrices with a diagonal commutator along a given direction, but
we consider a simple set for simplicity.

We consider the pair of NxN, N €N, matrices A, with non-zero elements around
and on the diagonal, and B, diagonal, of the form

a1 an 0 0 0
0 axn axy .. 0 0
0 0 a 0 0
A= | ¥ (11)
0 O AN-1,N-1 AN-1,N
0 0 aANN-1 ANN
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by 0 0 O 0
0 b, 0 O 0
0 0 b 0 0
B= ’ , (12)
0 0 0 by 0
0O 0O 0 O . by

both matrices with complex entries.
A straightforward calculation yields the characteristic polynomial of the matrix A,

det(A — ﬂ.IN> = ((ln - ﬂ)“’(ﬂNfz,N,Z - ﬂ)

x[A* = Aann + an-1,N-1) — AN-LNANN-1 T AN-1L,N-14NN ], (13)
whose solutions are
A =a11,a0, ...,aN 2N-2,4 " ,a (14)
where
at = % (ﬂN—1,N_1 +any £ \/(ﬂN—1,N—1 —ann) + 4ﬂN—1,NﬂlN,N—1)- (15)

The corresponding eigenvectors are a bit complicated to write them down here,
but, for instance, for dimension four, the eigenvalues are
an, (an + ass —2)/2, (axn + ass +2)/2, and the corresponding eigenvectors are

(1,0,0)", (16)

( ﬂu(—ﬂzz + as3 +Z) B —ay ‘a3z +2 l)T (17)
an(2an —an —as +z)’ 2a3 ’ ’

( ap(an —ax +2) ayp —asz+23 1>T (18)
an(—2an +an +as+z2)’ 2a3; )

where

g = \/4ﬂ23ﬂ32 + (an —az)’. (19)

These eigenvalues are discrete and fixed and the eigenvectors are different
between themselves.

Still, we can generate additional eigenvalues and eigenvectors by choosing the
values of a;;. The eigenvalue equation Au = yu, y€C, u = (44, ..., uN)T eCV, leads to
a system of simultaneous equations which is now solved for the a;’s with solutions

anu) AN-1,NUN AN,N-1UN—-1
» w3 @N-1N-1 =Y ————HANN =YV ——— . (20)

an =y —
25 UN-1 un

This solution set gives rise to a matrix that results in weighted differences between
the entries of a vector, resembling a finite-differences derivative [3-15].
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Now, the determinant of the matrix A is not zero; it is equal to

N-2
det(A) = (an-1,N-14NN — AN-1,NAN,N-1) H ajj, (21)
j=1
and then, we can compute its inverse in the usual way. We could find it with
A~! = [det(A)] 'adjA, where the adj A is the adjugate of A, whose entries are given

by (—1)"7det(A(j,7)), where A(j, ) is the minor obtained by deleting the jth row and
ith column from A [1]. The inverse matrix A becomes

N-2 N-1
1 an  anpaxy ~anNITe—g ke [lemg @it
N-2 N—2
an  andy andnds w] [ ke w] -5 ae
N-2 N-1
0 1 a3 aNN] s rger ey ke
N—2 N—2
Al= an anass w ] L= @k wlh—mae |, (22)
0 0 0 ANN __AN-1,N
0 0 0 __4N,N-1 AN-1,N-1

where w = ay_1N-14NN — AN-1,NAN,N-1. When w vanishes, there is no inverse of
the matrix A. This matrix resembles a discrete integration approximation over sub-
intervals, with weight factors given by the matrix elements [3].

The usual eigenvectors are too complicated to write them here, but the comple-

. T . . . . .
ment eigenvector v = (v1,02, ...,Un) , with eigenvalue 7, is obtained when the diago-
nal matrix elements are given as

1 v .
gjj :——]—Haj,]url,ls] <N, (23)
T Uj
1 UN—
aANN — — — 1aN,N71- (24)
T UN

We saw some properties of the general matrix A. Next, we analyze particular
versions of this matrix.

3. The commutator between matrices A and B

The commutator between the matrices A and B results in

0 1/112A1 0 0 0
0 0 ﬂ23A2 0 0
0 0 0 0 0
A,B=| . , (25)
0 0 0 0 aNfl,NANfl
0 0 0 —aN,NflANfl 0
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where A; = bj,1 — b; is the difference between b;, 1 and b;. This matrix is not
diagonal; it does not depend on the diagonal elements of the matrix A, and it intro-
duces the differences between adjacent diagonal elements of the matrix B. We can
choose the values of @;;,1 and ay n_1 to obtain the effect of a diagonal commutator
when acting on the particular arbitrary vector h. This procedure can be applied to
more general matrices A and B. Still, our choice of the form of matrices A and B is for
the sake of simplicity and to define a two-point derivative matrix that satisfies the
commutator relationship and has as eigenvector the exponential function.

We ask matrices A and B to comply with the requirement that

[A,Blh =ah, a€cC, (26)

where h = (hy, s, ..., hN)T eCVisan arbitrary complex vector of length N but
with non-zero entries ; # 0. The requirement Eq. (26) leads to a system of simulta-
neous equations that are solved not for the vector h but for the entries of the matrix A.
The resulting matrix is

h1a
0 0
a1l ol
/’lz(l
0 — 0 0
2 h3A;

Ac _ O 0 ass3 0 0 ) (27)
. hN_1a
0 0 0 aAN_1,N—

N-1,N-1 hNAN—l
hNa
0 0 0 - a
hn-1AN—1 N

which depends on h and a. With these matrices, the commutator becomes a
permutation matrix with weights ah; /h; 1 or ahy /hn_1,

h1
0 ar 0 0 0
ah2
hy
0 0 a2 0 0
ah3
0 0 0 .. 0 0
A,B=| . (28)
0 0 0 !
hn
h
0 0 O aN 0
hn-1

This matrix performs two shifts when acting on the vector h. Since the matrix has
only upper off-diagonal elements different from zero, there is a shift to the left. But
the ratios &; /h; 1 shift back the vector. Then, the commutator is diagonal along the
direction of h.

Now, we use another condition on A, to determine its diagonal entries. The version

of the matrix A, that complies with the eigenvalue equation A,v = yv is
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A =
]/lll)z(){ hla
- — 0 0 0
h2U1A1 hZAl
h21)3a ]’lza
0 . 0 0
h31)2A2 I’L3A2
h31}40!
0 0 - 0 0
h4U3A3
hn_10na hn_1a
0 0 0 -
hnUN-1AN-1 hnAN-1
hNa hNUN_1(l
0 0 0 —
hn-1An-1 hy-1ONAN-1
(29)
The action of this matrix on a vector g = (g, 85 -»gy) €C is
~ hja hvi1a
Ag). + —L> > 1<j<N, 30
( g)] h]+1A g]+1 < h]+1U]A] g] ] ( )
~ thN_la hNa
Ag). = — _—— . 1
(Ag)y (r oA 1 AN T A N (31)
If we use power series expansions for the quotients % (b)/h(b + A) and
v(b + A)/v(b), at mesh points, we obtain
h] 1 h]/ Vi1 1 v;
=——240(4), and L==_—1240(4)). (32)
h]+1Aj A h] ( J) U]'Aj Aj Uj ( ])

With these expansions, we obtain the small A; expressions

Aj—0 \j

. gi1—& V] h; .
(Ag)] a A J+g]< aé)aé(gj+lgj)+O(Aj), 1<j<N, (33)

. hy

DN—
(Ag)NA (%gN _gN—1> + gy +0(4)). (34)

-0 hN 1AN-1

Note that, since g;,; —g; — 0 and (g]+1 gj)/A — ¢'(b;) as A; — 0, if we ask that
y — av! /v] — 0, we would get ag (b ) from Egs. (32) and (33) in the limit A; — 0.

Thus, if we make the choice v(b) = e*/¢, Eqgs. (30) and (31) lead to finite difference
approximations to the derivative when A acts on g. The right hand side of Eq. (33)
becomes the finite differences derivative of g(b) at the boundary plus the boundary

term yg,. Hereafter, we will use v(b) = ¢*/*, and finite A;.
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4. The derivative matrix

With the choices h; = v and v; = v (b;) = ¢/, the matrix a 1A becomes the
derivative matrix

y 1 e«
e 0 0 0
Aq Aq
j29)
y 1 e«
0 - 0 0
a Az Az
y 1
0 0 ——— 0 0
a A3
D-— (35)
g*m)’fz
0 0 0 0
An_
7AN-_1
y 1 e a
0 0 0 . ——
a An- An_1
¢ 1
0 0 0o .. 4

A1 a Ay,

. T
When the matrix D acts to the left on a vector f! = (fl,fz, ,fN) eCV, we
obtain

£7D = —((B);, (DE)y, ., (DE)yy o, (DE)y 4 + (BE)y 1., (DE)y + (BE)y)",  (36)

where
_ (Y _ l *VA’—l/afﬂ 1
(DF), = (a Aj)fj rersll g, (37)
1 7
(Bf); = (A_l - a)fp (38)
(Bf)y 4 = e —AJ:;V - (39)
(Bf)y = —2$, (40)

which is the negative of a finite-differences approximation to the derivative of f.

When 4 is small and using the exponential expansions ¥4/ = 1$y% + -+, we find
that

(Df)fA:’oJ;j _le ~L(f—f) +O(ay), 1<j<N. (41)

When D is applied to the right to the vector g = (g, ..., gN)T, we obtain
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Dg = ((Dg),; (Dg),> > (Dg)y_y (Dg)N)T’ (42)
where
_(r 1 *ZA'gj“ .
(Dg)].—<a—Aj>gj+e ]Tj’ 1<j<N -1, (43)
_ (7 1 _ Ay, 8N
(Dg)y = (a+ ANl)gN R v (44)
For small Aj, these equalities become
gin—& v .
(0g), =, " (g g) TO(), 1SN-L (9
EN —8n-1 7
(Dg)NA:O% + p (en —&n-1) T O(8). (46)

These approximations show that D is a derivation matrix, exact for the exponential
function e/« for any value of A;.
For instance, for dimension five, the eigenvalues of the derivative matrix D are

1y 1y __1 i i
Ae T Aya T By 2}, and the corresponding eigenvectors are

[RIR

r v
da’a

(eﬁbl,e%bz, ...,eib“,e%bS)T, (47)

(0,0,0,0,0)7, (48)

(1,0,0,0,0)7, (49)

(s ernns)

(_ e T s g 0>T (51)
(A1 —A3) (=AM +A3) A=A 770 )70

and the exponential function is an eigenfunction of the derivative matrix with
eigenvalue y/a.
The determinant of the derivative matrix D is

P11y
|D|:;;[<A—k—a>. (52)
=1
Therefore, as long as @, A,y # 0, and a — yA, # 0,k =1,2, ... ,N — 2, we can

compute the inverse of D. For dimension 4 x 4, the inverse matrix is
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D!=
al; A a2A2 e H(A1+A7) )3 (a + },A4) e 5(A1+Ar+A3) (4
a—yAr (a—yA)(a—rAy) pAa—yAi)(a—yA)As  yra—yAr)(a —rAr)Ay
0 e~ BN, e i bt g (o + yAy) Lzl 3
a—yh r*(a —rA2)As r*(a—rhy)A,
0 0 ala+yAy) e
72A4 }/2A4
52
0 0 era ala —yAs)
r*As r*As

(53)

When this matrix acts on a vector, the result is a collection of partial summations
with weights given by its entries, an integration matrix. The eigenvalues of the inverse
— 222 and the corresponding eigenvectors are

a—yA;? a—yAy

matrix are ¢, ¢, —
Yyov

)4 Y 4 Y T
(eﬁbl,eﬁbz,eﬁh%e?fb“) s (54)
T
(0,0,0,0)", (55)
, T
(eabl,o,o,o) , (56)
e'%blAz 1y T
— % pd2
( Al—Az’e ,0,0) . (57)

The exponential function e’”/* is an eigenvector of the inverse matrix (a finite
differences integration matrix) with eigenvalue a/y.

4.1 Summation by parts

A practical result is the summation by parts theorem (the discrete version of the
continuous variable integration by parts theorem), the subject of this section.
We start by defining the summation matrix

A 0 0 .. 0 0
0 A, O 0 o
S=1|: (58)
0 0 0 .. A1 O
0 0 O 0 o
The summation matrix S allows for determining the equality
fTSDg = gT (]~3 - SDT)f, (59)
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where
=A—1 0 0 0
0 0O 0 O 0
0 0 0 0 0
0o 0 0 e 0

0 0 0 0 0 0
e’yil 1
- — 7 9 0 0 0
Az Az a
_rdy 1
e« y
rAN_2
e« 1 y
0 0 0 0 — - =
A1 Ayo1 o«
0 0 0 0 0 0

is the with continuous entries, adjoint of the discrete derivative matrix D. When
this matrix acts on a vector f, we obtain a vector with entries

1 v 1 .
i = | ——— L — — a f.
(D f)j = <Aj a)ff Aje f;—l’ 1<j<N. (62)
The small A; limit of the boundary terms is
(ng) o, g1+ 0(4)), (63)

(ng _’(fN En T O( ) (64)

and, for the adjoint matrix DY, we obtain

fi—fia
Df), I~ o(a 65
(D), =0 ~Tf (65)
Thus, the adjoint matrix is a derivation minus a constant term.
For a matrix with dimension 4 x 4, for instance, the eigenvalues are 0 of multi-

plicity two, 3> — 1, and 5; — L, and the eigenvectors are
(0,0,0,1)", (66)
hy Y v\ b 7\ - \T
(F(r-a)(1-al)eF(1-aL), e 0) (67)
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byy T
A3 — A TTa ¥
(0,_%,6—%,()) , (68)
2
(0,0,1,0)7, (69)

and the complement, for arbitrary dimension, eigenvector is

0 e Th2/a e rhn/a 0 ' (70)
s 3 eeey 4 > 7
a— (ar+7y)A; 2,;22(6! — (ar +7)Ar)

with eigenvalue r€C, and .= Alk -5 k=2,3,..,N —1, the complement of the

regular eigenvalues.

The determinant of the matrix D' vanishes, and then, there is no inverse matrix
at all.

We arrived at a finite-differences derivative of a function that complies with the
discrete versions of the properties that the continuous derivative has [16].

4.2 The upper diagonal matrix
The simplest case of matrices with diagonal commutator along the direction

of h is obtained when the diagonal elements of the matrix A vanish, a;; = 0. That
matrix is

hla
0 —— 0 0
hyAq
hz(l
0 0 0 0
h3A,
A, = 0 0 0 0 0 71)
hN_la
0 0 0 0
hnAN_1
hN(X
0 0 0 - 0
hy-1AN—1

This matrix is also a cyclic shifting matrix to the left, with rescaling, in general, and
only a rescaling matrix when acting on the vector h as if it were the matrix

a diag (Aj_1> , with Ay = Ay_1.
The eigenvalues of the matrix A, are
ia

A = 0 (with multiplicity N — 2),and iy = + A (72)
N-1

and the corresponding eigenvectors are

272



Matrices with a Diagonal Commutator
DOI: http://dx.doi.org/10.5772 /intechopen.1003770

AN Zhl AN 2]’!1
TTIN—2 , TIN=2 A
Hjﬂ 4 ijl 4
1  AN=3h, AN=3h,
N—2 —
0 Hj—Z 4j Hj—z 4j
X) = 0 s AN 4h3 s AN 4h3 . (73)
: N 2 N—Z
’ Hj:S Aj =3 4j
0 . .
iNithfl —iNithfl
iNfth _Z'Nfth

Additionally, there are N — 3, not well-defined vectors corresponding to the null
eigenvalue with degeneracy N — 3. These eigenvectors give rise to a vector space of
dimension three. However, if we just look for the solution of the simultaneous linear
equations, there is another set of eigenvectors, the complement eigenvalue g, and the
eigenvector v with entries—for dimension five—given by

vs _ _l.h_s Ve _hafhs vz hafhy vy hafA

= = . 4
V4 h4 ’ U3 h3a ’ (%] hz V1 hla n€ C (7 )

with eigenvalue f = tia/Ay.
The determinant of the matrix A, vanishes, and then, there is no inverse
matrix at all.

5. Conclusion

We discussed several properties of matrices, namely, pairs of matrices with a
diagonal commutator when applied to a given vector, exact finite-differences deriva-
tion and integration, and complement eigenvalues and eigenvectors.

These results are relevant in quantum mechanics theory, in which some operators
have a discrete spectrum. Our scheme might be of interest in quantum gravity theory,
too, because the space is quantized, and then a discrete derivative with respect to the
length variable is needed [17, 18].
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Chapter 15

On the Universal Realizability
Problem: New Results

Ana I. Julio and Ricardo L. Soto

Abstract

Let A = {41, ..., 4, } be a list of complex numbers. A is said to be realizable if there
is a nonnegative matrix with spectrum A. The list A is said to be universally realizable
(UR) if it is realizable for each possible Jordan canonical form (JCF) allowed by A. The
problem of determining the universal realizability of A is called universal realizability
problem (URP). The first results concerning URP (formerly called nonnegative
inverse elementary divisors problem) are due to H. Minc and they establish that if A is
the spectrum of a diagonalizable positive matrix, then A is /R. In this chapter, we
introduce new results that contain extensions of Minc’s results and that allow us to
show the universal realizability of lists of complex numbers not positively realizable.
We also prove new universal realizability criteria and structured universal
realizability criteria.

Keywords: nonnegative matrices, universal realizability problem, nonnegative
inverse eigenvalue problem, Jordan canonical form, realizability of spectra

1. Introduction

Alist A = {41, ..., 4, } of complex numbers (with repeats allowed) is said to be
realizable if there is an # X7 nonnegative matrix A whose spectrum is A. In this case,
A is said to be a realizing matrix. It is well known that if A is a nonnegative matrix,
then the spectral radius of A, p(A) = max{|4;|, 4; eigenvalue of A}, is an eigenvalue of
A called its Perron eigenvalue. Throughout this chapter, if A = {41, ..., 4,} is realiz-
able, ; will be the Perron eigenvalue of the corresponding realizing matrix. The
problem of determining the realizability of A is called Nonnegative Inverse Eigenvalue
Problem (NIEP, see Ref. [1]). If the realizing matrix A is diagonalizable, we say that
A is diagonalizably realizable (DR). A list A = {1, ..., 4, } is universally realizable
(UR) if it is realizable for every possible Jordan canonical form (JCF) allowed by A.
The problem of determining the universal realizability of a list A of complex numbers
is called universal realizability problem (URP) (formerly called Nonnegative Inverse
Elementary Divisors Problem (NIEDP, see Ref. [2])). Both problems, the NIEP and
the URP, have been completely solved only for lists of # <4 complex numbers, which
show the difficulty of both problems.

A matrix A = [a;] of order n is said to have constant row sums if all its rows sum
up to the same constant a. We denote by CS, the set of all #x# real matrices with
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constant row sums equal to a € R. It is clear that any matrix in CS, has an eigenvector
e =[1, ..., 1]7 corresponding to the eigenvalue a. The relevance of the real matrices
with constant row sums is due to the well-known fact that the problem of finding a
nonnegative matrix with spectrum A = {41, ..., 4, }, 41 being the Perron eigenvalue, is
equivalent to the problem of finding a nonnegative matrix in CS;, with spectrum A
(see Ref. [3]). We define the kth moment of the list A to be s, (A)::Z;’:lljk, k=12, ...
It is clear that if A is the spectrum of a nonnegative matrix A, then

sp(A) = trace (Ak ) >0, fork =1,2, .... Moreover, we denote by e, the vector with one
in the kth position and zeros elsewhere. Finally, we denote by E;; the matrix with 1 in
position (4, ) and zero elsewhere, and we define the matrix

E= ZieKEi,i"Fl’ C {2, e s — 1}

The URP includes the NIEP and both problems are equivalent if the elements of
A ={A, ..., A, } are distinct. Since 1949, many works on the NIEP have been
published. In contrast, few works are known about URP. As far as we know, the first
results concerning URP (formerly NIEDP) are due to H. Minc. In Refs. [4, 5], Minc
studied the problem for nonnegative and doubly stochastic matrices. In particular, he
proved the following theorem, which we write in terms of the URP as:

Theorem 1.1 Let A = {44, ..., 4, } be a list of complex numbers. If A is
diagonalizably positively realizable, then A is universally realizable.

It is clear that the diagonalizability condition is necessary, while the positivity condi-
tion is essential for the proof of Minc’s result. Minc set the question whether his result
holds for nonnegative realizations. This question was open for almost 40 years. Recently,
two extensions of Minc’s result have been obtained, which we will discuss in Section 2.

In what follows we will use the following results, some of which have been
employed with success to obtain sufficient conditions for the NIEP and the URP to
have a solution. The first two are perturbation results: the first one, due to Brauer [6],
shows how to change one single eigenvalue of an 7 xz matrix without changing any of
the remaining #—1 eigenvalues. The second result, due to R. Rado and published by
Perfect in Ref. [7], is a generalization of Brauer’s result. It shows how to change »
eigenvalues of an 7 x# matrix without changing any of the remaining n—r
eigenvalues. The third result, by Soto and Ccapa [8], shows how is the JCF of the
Brauer perturbation A + vq”. Next two results are a symmetric version of Rado’s
result [9] and a result, due to Laffey and §migoc [10], that solves the NIEP for left
half-plane lists of complex numbers, that is, lists A = {1, ..., 4, } with 4, >0,

Re 4, <0,i=2, ...,m.

Theorem 1.2 [6] Let A be an nx# matrix with eigenvalues 44, ..., 4,. Let v =
[v1, ...,v,]" be an eigenvector of A associated with the eigenvalue 4, and let q be any
n-dimensional vector. Then A + VqT has eigenvalues A1, ..., 441, 4 + qu, Alits wees Ane

Theorem 1.3 [7] Let A be an #xn matrix with eigenvalues 44, ..., 4,. Let X =
[%1]-*+|%;] be such that rank(X) = r and Ax; = 4;x;, i =1, ..., 7, r<n. Let C be an rxn
matrix. Then A 4+ XC has eigenvalues yq, ..., #,, Ary1, ... » 4y, Where piy, ..., p, are
eigenvalues of the matrix Q + CX with Q = diag{4s, ..., 4 }.

Theorem 1.4 [8] Let q = [y, ...,q,,] " be an arbitrary zn-dimensional vector and let
E;j; be an n xn matrix with 1 in position (7,) and zeros elsewhere. Let A € CS,, with JCF
J(A) = ST'AS = diag (A1), ], (22)5 oo s T (W) T 20 + 320 1q; # Air i =2, ..., m, then
A + eq" has Jordan canonical form J (A + eq”) =J(A) + (3°7_1¢;)E1. In particular, if
" .4, =0, then A and A + eq” are similar.
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Theorem 1.5 [9] Let A be an # xn symmetric matrix with eigenvalues 44, ..., 4,. Let
{x1, ..., X,} be an orthonormal set of eigenvectors of A such that AX = XQ, where
X = [x1]--+|%,] and Q = diag{ s, ..., 4 }. Let C be any rx» symmetric matrix. Then the
symmetric matrix A +XCXT has eigenvalues yq, ..., t,, Ars1, .o s dn, Where pq, ..., 1,
are eigenvalues of the matrix Q + C.

Theorem 1.6 [10] Let A = {44, ..., 4, } be a list of complex numbers such that 4; > 0
and Re 4;<0,i =2, ...,n. Then A is realizable if and only if the following conditions
are satisfied:

n

n
2 2
s1= 2/1,-20, s = ,21:/1" >0, s3<ns;.
1= 1=

Since a list of complex numbers A = {11, ..., 4,} is always the spectrum of some
nxn matrix A (for instance, a diagonal matrix), from now on we will use, inter-
changeably, the term list or spectrum. Regarding Minc’s result, the following question
arises: Are there spectra no positively realizable that are ¢/R? This question has a
positive answer. The following results have been progressively obtained:

1.In Soto and Ccapa [8], it was proved that spectra of real Suleimanova type [11],
that is,

A={l, s dn} with 4 >0>0> 24, are UR. (1)
2.In Soto et al. [12], it was proved that spectra of complex Suleimanova type, that
is,

>0, ReA<O0,|Rek|>|ImAl, i=2, ..,n are UR, )

3.In Diaz and Soto [13], it was proved that spectra of Smigoc type, that is,
J1>0, ReA <0, |V3Re 4| >|ImAl, i=2,..,n arealso UR. 3)

It is interesting to note that in all these three cases, A is UR if and only if A is
realizable if and only if Y " ;4; > 0. Moreover, these three kinds of spectra are left half-
plane spectra, and the good behavior of them led us to think, in a first moment, that
any left half-plane spectra were (/R. In Julio et al. [14], the authors showed that this is
not true. In fact, the spectra

A= a,fli@i,fiﬁi, a>0
47 4 P37 g

are not DR, and therefore not UR.

2. Extensions for Minc’s result
In Ref. [15], the authors Borobia and Moro prove the following result:

Theorem 2.1 [15] Let A be a nonnegative irreducible matrix with spectrum A =
{21 ..., 4»} and a positive row or column. Then A is similar to a positive.
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Recently, two extensions of Minc’s result have been obtained in Collao et al. and
Johnson et al. [16, 17]. In Ref. [16], Collao et al. showed that a nonnegative matrix
A €(CS,,, with a positive column, is similar to a positive matrix (the irreducibility
condition is not necessary if A € CS;,). Note that if A is nonnegative with a positive
row and A” has a positive eigenvector, then A” is also similar to a positive matrix. As a
consequence we have:

Corollary 2.1 [16] If A is the spectrum of a diagonalizable nonnegative matrix
A €(CS,, having a positive column, then A is UR. If A is diagonalizable nonnegative
with a positive row and A” has a positive eigenvector, then A is also UR.

Regarding the second extension for Minc’s result, we have:

Definition 2.1 We call a realization A = [a;;] off-diagonally positive (ODP), if
a; >0 whenever i # j, and on the diagonal, zero entries are allowed. Furthermore, a
realization is quasi-ODP, if all off-diagonal entries are positive, except for one that is
zero.

In Ref. [17], Johnson et al. introduced the concept of ODP matrices and proved that
if A is diagonalizably ODP realizable, then A is R. Note that both extensions contain,
as a particular case, Minc’s result in Ref. [4]. Both extensions allow us to significantly
increase the set of spectra that can be proved to be (/R. The extension in Johnson et al.
[17], for instance, allows us to prove that certain spectra A = {41, ..., 4, } withs1(A) =
0, are UR, which is not possible from Minc’s result.

There are a number of spectra that are ODP realizable, as for instance, spectra of
real numbers of Suleimanova type, which are realizable if and only if " ;4; >0 (see
[7, 18]). Moreover, it was proved in Johnson et al. [17] that real spectra of
Suleimanova type are diagonalizably ODP realizable, and therefore U/R. In fact, it is
clear that A is the spectrum of

M

=iy A
e R €CsS,,.

M= An

Then since Ae = 1se, for q7 = [Z:’:Z/L-, A2y s —/1,,] ,A+eqlisa diagonalizable
ODP matrix with spectrum A. Thus, A is UR.

Theorem 2.2 [17] Suppose that a spectrum A = {41, ..., 4, } is realizable, with a
certain JCF, by a matrix that is either ODP or quasi-ODP. Then, A is realizable, by a
matrix with any coarser JCF, by a matrix that is ODP or quasi-ODP.

Proof: Suppose that A is ODP realizable, with a realizing matrix A € CS,,, with
JCFJ(A) =S 'AS. Let B=SES !, where E =Y, _(Ei;11, Kc{2,..,n—1}. Since
B is such that t7(B) = 0 and B € CSy, then from Theorem 1.2 and Theorem 1.4 with
q = —b (b is the vector of entries diagonal of B), the matrix B + eq” has all its
diagonal entries zero. Therefore, by picking ¢ small enough, we have that A +
¢(B + eq") is nonnegative with the same eigenvalues as A, but the coarsened JCF.

If A is quasi-ODP with a zero entry in position (j, k), j # k and B + eq” has zero
diagonal entries with a negative entry in position (j, k), j # k, then by choosing e <0
small enough, the (j, k), j # k entry in A + £(B + eq”) will be positive. Since £ <0 is
small enough, it does not matter if the other possible positive entries in B + eq”
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become negative. Anyway, A + s(B + eqT) will be nonnegative, cospectral with A,
and with the coarsened JCF.

In the event that the original realization is diagonalizable, we have the following
important special case, which generalizes the classic result of Minc in [4].

Corollary 2.2 [17] If a spectrum A is diagonalizably ODP or quasi-ODP realizable,
then A is UR.

Proof: Apply Theorem 2.2 with the original blocks all 1x1 in the real eigenvalue
case, and all blocks 2x2 (real blocks) in the complex conjugate eigenvalue case, any
sequence of merged blocks may be achieved, resulting in any JCF allowed by the
spectrum.

Example 2.1 Consider the list A = {6,1,1, —4, —4} which is diagonalizably ODP
realizable with realizing matrix

o 3tV5 3-V5 3-1\5 3+4/5]
2 2 2 2
3+5 0 345 3-v5 3-4/5
2 2 2 2
A= |3-V5 3+V5 o 3445 3-S5
2 2 2 2
3—v5 3-V5 3+4/5 0 3445
2 2 2 2
345 3—v5 3—5 3445 0
L 2 2 2 2 i

Let S = [s1, 82, ..., S,] be the matrix of eigenvectors of A, where s; = e, such that
STAS =J(A) = diag{6,1,1, —4, —4}. In particular, for J(A) = diag{J,(6),],(1),],(—4)},
where (1) denotes a kxk Jordan block corresponding to the eigenvalue 4, we

T
have, for q = <— %, -1, %, %, —%) , the matrix

0o Y5 11 V5 oavs o WS
10 2 2 10 5 5
VAR VS V5SS
5 5 5 5
SES™' +eq" = §+1 ﬁ_l 0 ﬁ _% ,
10 2 10 2 5 5
VSoVs 1 Vs 15
5 10 2 5 2 10
EVERE I S R E I
L 5 10 2 5 10 2 _

where E = E,3 + E45, having all its diagonal entries zero. Thus, we chose ¢ # 0
small enough, to obtain A + s(SES’1 + eqT) , which is a nonnegative ODP matrix

with JCF having Jordan blocks J;(6),/,(1),],(—4). In a similar way, we may obtain a
nonnegative matrix with spectrum A, for each one of the other JCF allowed by A.
Thus, A is UR.
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3. On universal realizability criteria

It has been commented in the Introduction that real and complex spectra of
Suleimanova type are UR [8, 12]. In Collao et al. [19], the authors study lists with two
positive eigenvalues and they prove that, under certain conditions, these types of lists
are not only realizable, but also U/R.

Theorem 3.1 [19] Let A = {p,q, =71, =72, ..., =742} be alist of # real numbers with

n—2

p+qa—Y 1=0,

j=1

inwhichp,q,7,>0; p>q,7, j=1,2, ..,n =25 =12 — 1541, = 1,2, .., n = 3. If
there is a decomposition

R ={r,72, ...,7y—2} = RqUR,with
Rl = {ala ’ax}yRZ = {ﬂl: >ﬂn7275}saisﬂi ER:

in such a way that

s n—2—s
p> ;> Z B, then A isUZR.

i=1 i=1
Proof: Take
A = AOUA]UAZ Wlth AO - {_p: Q},

A = {—0!1, ) _a:}) A = {_ﬁp ey —ﬂt}, t=n—-2-—s
ai’ﬁi >O5 — Q, _ﬂie{_rla —72, ---,—anz},

with the associated lists

Fl = {p —1,—a, ...,—as},l—‘z = {q+t’ _ﬂl’ ""_ﬂt}’
t

s
witht>0andp —t =) &, g+t = ;. Note that the lists I';, I'; are of real
i=1 j

i=1
Suleimanova type, then from Soto and Ccapa [8], they are UR. Let A1 and A; be the
realizing matrices of I'; and I';, respectively. Sincep —q —t >t >0,

—t t
B = { P }is nonnegative with spectrum Ag
p—q—t g+t

and the required diagonal entries. Thus, from Theorem 1.3 with X the #x2 non-

) ) ) Aq : )
negative matrix of eigenvectors of { } and C the 2x7 nonnegative matrix, such
2

that CX = B — Q with Q = diag{p —t,q +1},

[ 1 B ] + XC is nonnegative with spectrum, A
2
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and with the required JCF allowed by A. Then, A is UR.
Note that if A = {p,q, —7, —7, ..., —r} withp +q — (n — 2)r = 0, where

p,4,7>0, p>q,7; q>7, thenif n is even, A is UR. If n is odd with p > “=2y, then A

2
is also UR.
Example 3.1 Let A = {19,1, -2, -2, —3, —3, —5, —5} (with)

Ao = {19,1},A; = Ay = {-2, -3, -5}
I, =T, = {10, -2, -3, -5}.

We want to construct a nonnegative matrix A with JCF

J = diag{J1(19),]1(1),J2(=2),J»(=3),J1(=5),J1(=5)}-

Then we compute

10 0 0 O 0 5 2 3
15 -5 0 O 5 0 2 3
13 0 -2 -1 3 50 2
3 0 0 -3 35 20
10 0 0 O 0 2 3 5
13 -2 -1 0 3 0 2 5 10 9
Ax = +eq" = and B = :
13 0 -3 0 3 2 05 9 10
15 0 0 -5 5 2 3 0
Then
05 2 3 0 0 0 07 1 07
502 3 0 00O 1 0
3502 0 00O 10
A 3520 -1100 N 1 0([0O O OO 9 0 0 0
oo o0 o0 0 2 35 0 1|9 0 0 0O OO 0O
000 0 3 025 0 1
0 000 3 2 05 0 1
L0 0O OO 5 2 3 0] L0 1]

is the desired matrix. In the same way, we may construct a nonnegative matrix for
each one of the remaining JCF.

Here, we consider more general lists of complex numbers and we give new suffi-
cient conditions for the URP to have a solution. We know that diagonalizability is a
necessary condition. Since normal matrices are diagonalizable, we set the following
result [20], in which we use normal ODP matrices:

Theorem 3.2 [20] Let A = {4, ..., 4, } be a list of complex numbers with A = A,

n
A1> max;|4], >4 >0 and let
i=1
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A= A()UAlU"'UApO
Ao = {401, 4025 -5 Ao, }> Ao = A
Ay = {/11613/1162: ~--:/1kpk}; ke = 1, 5P

where some lists A, k =1, ...,p,, can be empty. Suppose that the following
conditions are satisfied:

i. Foreachk =1, ...,p,, there exists a normal ODP matrix with spectrum
I, = {wk, el e > Akp, }, 0 <wy <A1, where wy is the Perron eigenvalue.

ii. There exists a p,, X p, normal ODP matrix with spectrum A and diagonal
entries w1 > wy > -+ > @y, .

Then A is UR.
Proof: From i) let A, be a (pk + 1) X (pk + 1) normal ODP matrix with spectrum

T, = {wk,/lkl, ...,zkpk},k =1, ..., g, 0 <o <.

Then A = diag{Al,Az, ’Apo} is an 7 x# normal nonnegative matrix realizing
I'=T1U---Ul, . Let

x 0 - 0
X — 0 X‘2 0
0 o - Xp,

T
the matrix of normalized eigenvectors of A, where x;, = [xkl, ,xkpk} is the

Perron eigenvector of Ay, Apx;, = wpX, with ||x;|| = 1. Since Ay, is an ODP matrix, it is
nonnegative irreducible, and then x;, is a positive eigenvector.

From ii) let Bbe a p, x p, normal ODP matrix with spectrum A, and diagonal
entries w1, ..., wp,. Let Q = diag{w1, ..., wp, }, and C = B — Q. Then, since A,X and C

are nonnegative with A and C normal, M = A + XCX T is normal nonnegative with
spectrum A. Moreover, since Ay, k =1, ...,p,, and C are ODP matrices, M is also an
ODP matrix. Thus, A is realizable by a normal ODP matrix, and from the extension in
Johnson et al. [17] A is UR.

Many of the known sufficient conditions in the literature about both problems,
NIEP and URP, have been obtained from Theorem 1.3 (Rado’s Theorem). A number of
distinct versions of Rado’s result have also been obtained. In Arrieta et al. [21], it has
been proved as regards a Rado diagonalizable version. It will be useful for constructing
diagonalizable nonnegative matrices, with prescribed spectrum, and for deciding
about the universal realizability of spectra.

Theorem 3.3 [21] Let A be an #nx#n diagonalizable matrix with spectrum A =
{A15 wes A} Let X = [xq]%7|--|x,] be an nxr matrix, with rank(X) = », » <n, such that
Ax; = A4x;,1=1, ...,7. Let
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Q = diag{l1, ..., 4} and let C = [cl]] be an 7 x » matrix suchthat B=Q + Cisa

diagonalizable matrix. Let J(A) = S"*AS be the JCF of A, with S = [X|Y], S! = [Xl .

Then, the matrix A + XCX is diagonalizable with spectrum g1, ..., ft,, Ar15 oo s Ans
where iy, ..., , are eigenvalues of B.

Proof: Since S™S = I,,, then XX =1,, XY =0, YX =0, YY =1I,,_,. Since J(A) =
Q®D, with D = diag{4,41, ..., x}, then,

S7(A +XCX)S = Q@D + S"'XCXS

X] .

— Q@D+ | |XCX[X Y]
g

=Q@D+ | |C[I, 0]
C o

= Q@D +

B O
“lo D|

Then A + XCX is diagonalizable, and from Theorem 1.3, it has the spectrum
His v s Bys Ari1s oo s An, Where piy, ..., pt, are eigenvalues of B.

Corollary 3.1 [21] If in Theorem 3.3, the matrices A and B are nonnegative diago-
nalizable and, X, X are nonnegative, then A + XCX is nonnegative diagonalizable with
SPeCtrUm fiq, .. fys Art1s woe s Ane

If in Theorem 3.3, the matrix A is block diagonal, with diagonalizable ODP blocks,
and the matrix B is diagonalizable ODP, then A is UR.

Example 3.2 Consider the spectrum

A={72,0,-1,-2+1i,-2—i,-2+1i,-2—i},

with Ag = {7,2,0}, T1 =T = {4, -2 +1i, -2 + i}, I'; = {1, —1}.The matrices

i 2% 6]
4 - e
NEE
24
B= 4 2 |
5
6
2 1
L V5 i
[0 2 2
0 1
Ai=A,=|3 0 1|, A3=
1 0
1 3 0

are diagonalizable with spectrum Ao, I'y, I'>, and I's, | respectively. Then,
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A = (A1®A,@A;3) + XCX

is diagonalizable ODP with spectrum A. Hence, from the extension in Johnson
etal. [17], Corollary 4.1, A is UR.

The following result from Ref. [21] gives a diagonalizable version of a Lemma by
Fiedler [22] that may be applied to decide the universal realizability of some lists of
complex numbers. Although the result is more general, we establish it here, without
proof, for diagonalizable nonnegative matrices.

Corollary 3.2 [21] Let A and B be nxn and m xm diagonalizable nonnegative

matrices with spectrum I'y = {a1, a2, ..., o, } and I'; = {4, f5, ..., B}, respectively.

Let u and v, with |lu|| = ||v|| = 1, be the Perron eigenvectors of A and B, associated to

a; and f3;, respectively. Let M = A®B and let J(M) = S™'MS be the JCF of M, with S =
X A *

X|Y], St = [ ~ |. Then for p > 0, the matrix F = { Py ] is diagonalizable
Y pvu’ B

with spectrum A = {yy,72, @5 -, &, By ... B }> Where y4, 7, are eigenvalues of

5l
B= .
P P

Corollary 3.3 [21] If in Corollary 3.2, A and B are normal nonnegative ODP matri-
ces, then the matrix

A *
SE!
pvu® B

is normal nonnegative ODP with the prescribed spectrum A. Hence, A is UR.

Proof: If A and B are ODP matrices, they are irreducible. Therefore, the
Perron eigenvectors u and v are positive. Thus, F is normal nonnegative ODP, and
A is UR.

The following result also establishes a universal realizability criterion.

Theorem 3.4 [21] Let A = {41, 43, ..., 4, } be a realizable list of complex numbers,
with 11, 1, being real numbers. Suppose that the lists

Al - {a13a2; -~-;ap}; A2 - {ﬂl;ﬂz: ---3ﬁq}7

withp+q=n, e €A, i=2,3, ...,p, BEN j=23,..,9, and oy +f; = A4 +
A2, are diagonalizably ODP realizable. Then, A is UR.

Proof: Let A; and A, be pxp and g xq diagonalizable ODP matrices, with spectrum
Az and Ay, respectively. Letu and v, |ju|| = ||v|| = 1, be the Perron eigenvectors of A;
and A,, associated to the Perron eigenvalues a7 and f;, respectively. Since A; and A,
are irreducible, then u and v are positive. As oy + f; = 41 + 4, there is a real number

a
p >0, such that the 2 x 2 matrix { ! /;) ] has eigenvalues 44, 4. Therefore, from
P 1

Corollary 3.2,

A T
A= [ 1T puv ]is diagonalizable ODP with spectrum A
pvu A,

Hence, from the extension in Johnson et al. [17] A is UR.
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Finally, we apply Theorem 3.3 to more general lists of complex numbers (not in
the left half-plane). For instance,

i) A ={8,6,3,3, -5, -5, =5, =5}, with Ag = {8,6}, Ay = Ay, = {3, -5, -5} and
I =TI, ={7,3, -5, -5}, is diagonalizably ODP realizable and therefore it is UR. ii)
A ={7,51,1, —4, —4,—6} with Ag = {7,5}, Ty = {6,1,1, -4, —4}, T, = {6, —6} is
also diagonalizably ODP realizable and therefore it is UR. iii) A =
{10,3,2, -1, -1, 34, -3, —1 £ 24, —1 £ 2i} with A = {10,3,2}, I'; = {6, 31, —3i}, [, =
I3 = {%, -1,-14+2 } is the spectrum of a diagonalizable nonnegative matrix A € CSyo
with a positive column. Hence, it is also UR. iv) A =
{13,3,1+ 44,1 — 4i,1+ 4i,1 — 4i} with Ao = {13,3}, I'1 =TI, = {8,1+ 44,1 —4i} is
the spectrum of a diagonalizable positive matrix. Hence, it is also /R. One of the
advantages of applying this procedure is that to decide whether A = {1, ..., 4,} isUR
we do not need to compute a nonnegative matrix for each JCF allowed by A. It is
enough to show that A is diagonalizably ODP realizable or A is the spectrum of a
diagonalizable nonnegative matrix with constant row sums and a positive column.

4. The URP for structured matrices
4.1 The URP for permutative matrices

An nxn permutative matrix is a matrix in which every row is a permutation of its
first row, that is,

Definition 4.1 Let x € R” and let P, Ps, ..., P, be nxn permutation matrices. A
permutative matrix is any matrix of the form

xT

p_ (P2.X)T

(P

It is clear that P € CSg, where S is the sum of the entries of the vector x.
Permutative matrices were introduced and first studied in Hu et al. [23]. In this
section, we study the permutative universal realizability problem, that is, the
problem of determining the existence and construction of a nonnegative permutative
matrix, with prescribed complex spectrum A = {/, ..., 1, }, for each possible JCF
allowed by A.

The following result gives a sufficient condition for that a list A = {41, ..., 4, } of
real numbers, with 4; > 0> 4, > A3 > 14 > -+ > 1,,, to be permutatively universally real-
izable.

Theorem 4.1 [24] Let A = {44, ..., 4, } be alist of real numbers, with
A1>0> 4> 43> A4 > --- > 4,. Then the following statements are equivalent:

1.3 ,4>0,
2.A is permutatively realizable,

3. A is permutatively UR.
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The following example illustrates Theorem 4.1. It shows how we may obtain, a
permutative realization, for each JCF allowed by a given real list
M>0>H>3> > 1,.

Example 4.1 Let us consider the list

A ={30,-1,-5,-5,-5,—7,—7}.

We start with

30 0 0 0 0 0 0
31 -1 0 0 0 0 0
35 4 -5 -4 0 0 0
B=[3 4 0 -5 —4 0 0
35 0 0 0 -5 0 0
31 6 2 0 0 -7 -2
31 6 0 0 0 0 -7

Then, forq” =[-30 1 5 5 5 7 7], we have that

B—i—eqT:

== =R O
NN - 01 o O -
U N o o O U U
U U1 o1 O =L, U1 U
g U1 O = U1 U1
N O N N NN
S U1 N N NN

is permutative with JCF J (B + eq") = diag{J;(30),]J1(—1),J3(—5),J,(~7)}. For

30 0 0 0 0 0 O

31 -1 0 0 0 0 0

35 4 -5 -4 0 0 0
B+eq=1{35 0 0 -5 0 0 0 |+eq,

3 0 0 0 -5 0 0

31 6 2 0 0 -7 =2

31 6 0 0 0 0 -7

we obtain the JCF J (B + eq") = diag{J1(30),]1(—1),],(=5),J1(=5),J,(~7)}, and
SO on.

From Theorem 1.3, we have the following Rado permutative version:

Theorem 4.2 [24] Let A = {41, ..., 4, } be a realizable list of real numbers, where
M>N> e >h>0> A 124122 2 Ay, With —4, > 1, n>2p for n even, and
n>2p +1forn odd n, p >2. Suppose that:

i. A admits a decomposition A = AgUA1U---UA1, where
——

ptimes
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Ao = {1,225 s By} A1 = {h11, A12s ooos A1)
ﬂlk € {ﬂerl’ /1p+2a e ’in}a ke = 1; 2; s 7y

such that I'; = {1}UA;, 0 <A<, is permutatively (circulant) realizable.

ii. There exists a p xp permutative (circulant) nonnegative matrix with
spectrum Ag and diagonal entries 4, 4, ..., 4 (p times).

Then, A is permutatively UR.
Example 4.2 Consider the spectrum

A ={4,1,1,-2,-2, -2}, with
Ao = {4,1,1}, T = {2, -2}

Then,
2 1 1
, 0o 2
B=1|1 2 1|,andA]= s
20
11 2

are permutative, realizing Ag and I'y, respectively. Then,

A = ABAIBA| +XC =

R R R R N O
=R NN O R R
o N O O O O

O O o0 o o N
O O O N O O
N O R R R R

is nonnegative permutative with diagonal JCF. Next, for

A// —

S O O N O
S O NN O O O
N ©O ©O ©O © O
SO N O O O O

S O o NN O O

= O O O O

-1

we obtain A, = A” + XC, nonnegative permutative, with JCF having one 2x2
Jordan block J,(—2). Next, for

0 2 0 0 0 0]

2 0 0 0 0 O

-11 0 2 0 O
A = ,

0O 0 2 0 00

0 0 -1 1 0 2

L0 0 0 0 2 0]
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we obtain A3 = A" 4+ XC, nonnegative permutative, with JCF having a 3x3 Jordan
block J3(—2). Thus, A = {4,1,1, =2, -2, —2} is permutatively UR.

4.2 The URP for centrosymmetric matrices

Centrosymmetric matrices have applications in many fields, such as physics,
communication theory, differential equations, numerical analysis, engineering and
statistics. An nxn real matrix C = [¢;] is said to be centrosymmetric, if its entries
satisfy the relation ¢jj = ¢,_i41,,—j+1, Or equivalently if J, CJ, = C, where
J. = €1, €n—1, ..., €1]. In this section, we study the centrosymmetric universal
realizability problem, that is, the problem of determining conditions for the existence
and construction of a centrosymmetric realizing matrix, for each JCF allowed by a
given list A of complex numbers.

The following two results are of constructive nature, in the sense that if they are
satisfied, then a centrosymmetric realizing matrix with spectrum A can be
constructed for each JCF associated to A. We introduce them here without proof.

Theorem 4.3 [25] Let A = {44, ..., 4, } be a realizable list of complex numbers with
A1 simple, n = 2m. Suppose A = AjUA; with A;nA; = @, where A; is diagonalizably
realizable by an m xm matrix W7 and A, is the spectrum of an m xm real diagonaliz-
able matrix W5, (not necessarily nonnegative). If Wy + W, is ODP and Wy — W, is
positive, then A is centrosymmetrically UR.

Theorem 4.4 [25] Let A = {41, ..., 4, } be a realizable list of complex numbers with
A1 simple, n = 2m + 1. Suppose A = AjUA; with A1NA; = @, where A is
diagonalizably realizable by the (m + 1) x (m + 1) ODP matrix

o o]
b’ ¢

and A, is the spectrum of an m xm real diagonalizable matrix W,. If W; + W, is
ODP and W1 — W, is positive, then A is centrosymmetrically U/R.
Example 4.3 Consider the list

A ={10,-2,-2, -2, 1+ 2i, ~1 — 2i, —1 + 2i, -1 — 2i}.
We apply Theorem 4.3 to show that A is centrosymmetrically /R. We take
Ar={10,-2, -2, -2}, Ay = {—1+ 2,1 — 2,1+ 2, —1 — 2i}
which are the spectrum of

-1 -2 0 O
2 -1 0 O
o 0 -1 -2
o o0 2 -1

Wi and W, =

W W W =
W = W W
=W W W

W W = W

respectively. Next, we compute the centrosymmetric ODP matrix
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0 1 3 3 3 3 5 2]
503 33321

330152 3 3

c L[ Wit wa (Wi-Wa), ] 113 3 50213 3
20, (Wi =Wy) J,(Wi+Wo),] 2|3 31 2 05 3 3
332510 3 3

12333305

2 53 3 3 3 1 0]

with diagonal JCF. Now, we compute a centrosymmetric ODP matrix C, with JCF

J(C2) = diag{],(10),]5(=2),J1(=2),J2 (=1 + 20), ] (=1 = 2i) }.

To do this, we first compute the matrix of eigenvectors of C; :

10 0 1 0 -1 0 -1T
10 1 0 0 —i 0 i
11 0 0 -1 0 -1 0
1 -1 -1 -1 i 0 i 0
S=11 1 14 1 i o =i o
11 0 0 1 0 1 0
10 1 0 0 i 0 —i
10 0 1 0 1 0 1]

Then for E = E; 3 + Esg + E7 g, we have

o o o o o o o0 o
o o o o o0 o o0 o

3 3 1 1 1 1 3 5

8 8 8 8 8 8 8 8
it 1111t 7l
1_| 8 8 8 8 8 8 8 8
SES ™ = 1 7 1 1 1 1 1 1
8 8 8 8 8 8 8 8
>3 1111303
8 8 8 8 8 8 8 8
0 0 0 0 0 0 0 0

Lo o o o o0 o0 0 o0 ]
and taking q = —d, where d is the vector of the diagonal entries of SES™* we obtain

that SES™* + eq” has all its diagonal entries being zero. Thus,
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'011311111351'
2 8 8 8 8 2
5 o BB
2 8 8 8 8 2
15 15 1 9 15 7
s 8 % 7221 3% 3
131311013513
— -1 ™n_|8 8 4 4 8 8
Cz—C1+(SES +eq)_§§§102§§
8 8 4 4 8 8
701509 1 1515
8 8 4 4 8 8
1, BB s
2 8 8 8 8 2
5 13 11 11 13 1
1 2 § 5§ 8 8 2 Y

is nonnegative centrosymmetric with spectrum A and with the desired JCF J(C,).
Applying the same procedure, changing the matrix E, say by, E1 = Ej 3,

E, = Ey3+ E34, B3 = Ey3 + E3 4 + Esg + Eyg, E4 = Esg + E7g, we may construct a
nonnegative centrosymmetric matrix with spectrum A, for each one of the other four
JCF allowed by A.

Theorems 4.3 and 4.4 allow us to show that certain real spectra of nonnegative
numbers and of the Suleimanova type are centrosymmetrically /R (Corollaries 4.1
and 4.2 below).

In Ref. [7], Perfect introduces the nx#n (matrix)

1 1 - 1 1
1 1 - 1 -1

P=[1 1 - -1 0 (4)
1 -1 - 0 0

and she proves that if D = diag{41, 42, ..., 4, } with 44> 1, > --- >4, >0, then pDp1
is a positive matrix in CS,,.

Corollary 4.1 [25] Let A = {11, ..., 4, } be a list of nonnegative real numbers with
M>>>2,>0.1f 4, > 4,1 whenn = 2m and A, .1 > A, ;» whenn = 2m + 1, then
A is centrosymmetrically UR.

Proof: For n = 2m, we define the m xm diagonalizable positive matrix with spec-
trum Ay = {41, ..., A} as Wy = PDP"!, where D = diag{A1, ..., An} and P is the
matrix in (4). Let W, = diag{ -1, ..., 4» } with spectrum A;. Note that A = AjUA;
and since 4,, > 4,11, AiNA; = @. Moreover, it is clear that W1 + W, is ODP. On the
other hand, in [Julio et al. [26], Theorem 3.2], it was proved that if 4, j = 1,2, ..., m,
are the diagonal entries of PDP!, then djj > Ay, forallj = 1,2, ... ,m. Thus, W; —
W), is positive. Then, from Theorem 4.3, A is centrosymmetrically UR.
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For n = 2m + 1, we define the (m + 1) x (m + 1) diagonalizable positive matrix
W,
b7
diag{1, ..., Am+1} and P is the (m + 1) X (m + 1) matrix in (4). Let W, =
diag{Am12; ..., A, } with spectrum A,. Again A = AjUA,, AinA; = @, W1 + W, is ODP
and W7 — W, is positive. Then, from Theorem 4.4, A is centrosymmetrically UR.
Corollary 4.2 [25] Let A = {1, ..., 4, } be a realizable list of real numbers with
M>0>4>-->4,.If A, > 4,1 whenn = 2m and A,, ;1 > A,,.» when#n = 2m + 1, then
A is centrosymmetrically UR.

a
with spectrum Ay = {41, ..., Apt1} as PDP! = { }, where D =
c

n
Proof: We assume without loss of generality that " 4; = 0. For n = 2m we define
i=1

M
M—d A
W, = _ ‘ +eq”
M=y 0 - A,
_Am-&-l _/1m+2 - /12 —An,, - M
_/lerl - /12 _lerZ _/’Ln - /Im
_ﬂm-‘rl - )vm _lm+2 - j'2 _/171
where q7 = [~Ani1 — M, —Ami2 — A2, **s —An — Am]. Note that Wy is an mxm diag-
onalizable positive matrix with spectrum A; = {41, ..., 4 }. Let W3 =

diag{Am+1, ..., An} with spectrum A,. It is clear that A = AjUA; and since A, > 441,
ANA; = @. Moreover,

0 —Ami2 =l v —dn = A
wiswy = | TR0 T
A1 —Am —Ami2 — A 0
is ODP and
“2mi1 w2z — A Ay — Am
Wy W, — —ﬂm+'1 ) _2/1'm+2 - —n - Am
P S N S )

is positive. Then, from Theorem 4.3, A is centrosymmetrically UR.
Forn = 2m + 1 we define the (m + 1) x (m + 1) diagonalizable nonnegative matrix
with spectrum A; = {41, ..., An+1} as
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A1
M- A
W1 a T
= : P +e
b’ ¢ 1
M= O e Ay
M= Ampr O o O Ay |
[ _)bm+2 _ﬁvm+3 - /12 _ln - jm _ﬁvm+1 i
_lm+2 - /12 _lm+3 _ln - }vm _ﬁvm-%l
_ﬂm+2 - j'm _ﬂm+3 - /12 _ln _ﬂm+1
| ~Ani2 = It Az — A v —dn—Am O
where qT = [—ﬂm+2 — Al, —im+3 — /12, sy —/1n - /1m, _/1m+1}-

Let W, = diag{Am+2, ..., A} with spectrum A,. Then from Theorem 4.4, the result
follows.

4.3 The URP for M-matrices

M-matrices appear in many applications in the physical, biological and social
sciences. A real matrix A is said to be an M-matrix if it is of the form A = al — B,
where B is a nonnegative matrix and Although M-matrices are not nonnegative, they
are related to nonnegative matrices. For instance, it is well known that the inverse of a
nonsingular M-matrix is nonnegative. Moreover, the problem of finding an M-matrix
A = al — B with prescribed complex spectrum A = {11, 43, ..., 4, } can be seen as the
problem of finding a nonnegative matrix B with eigenvalues @ — 13, @ — 42, ..., a — 4.
In Soto et al. [27], the authors study the URP for M-matrices. More precisely, they give
sufficient conditions for the existence of M-matrices with prescribed elementary
divisors. In particular, they solve the URP for certain lists of real numbers and for lists
of complex numbers of the form A = {41,a £ bi, ...,a £ bi}. In Soto et al. [27], the
inverse M-matrix problem for symmetric generalized doubly stochastic M-matrices is
also considered.

Proposition 4.1 Let A = al — B be an nxn M-matrix. Then.

i. BECS,, if and only if A €CS,»,.
ii. B,BT €CS,, if and only if A, AT €CS,_,.
iii. B is normal if and only if A is normal.
iv. B is symmetric if and only if A is symmetrix.
v. B is circulant if and only if A is circulant.
vi. A and B have the same eigenvectors.

Next result is an M-matrix version of Brauer Theorem.

294



On the Universal Realizability Problem: New Results
DOI: http://dx.doi.org/10.5772 /intechopen.1002910

Theorem 4.5 Let A = (al — B) € CS;, be an M-matrix with spectrum A =
{25425 ooy 2n}s 21> |4i], i =2, ..., n. Let B be with a positive column. Then A + eq” is
also an M-matrix with the same spectrum and with elementary divisors as A.

Proof: A+ eq” = al —B+eq” =al — (B— eq”). As B is nonnegative with its kth
column being positive, then by taking q = [g;], ¢, <0, i #k, g, =

n
—>4;< min {bi}, we have that B — eq” is nonnegative and 3 g; = 0. Thus, from
izl | 1sisn i-1

Theorem 1.4, A + eq” is also an M-matrix with the same spectrum and with elemen-
tary divisors as A.

Theorem 4.6 Let A = al — B be a diagonalizable M-matrix with spectrum A =
{A1,42, ..., A}, where B is positive. Then there is an M-matrix with spectrum A for
each JCF allowed by A.

Proof: Since A is diagonalizable then B = (b;) is diagonalizable and positive. Then
there is a positive matrix B’ with same spectrum as B for each JCF allowed by the
spectrum of B. Hence, A’ = ol — B is an M-matrix with same spectrum as A for each
JCF allowed by A.

Theorem 4.7 Let A = {41, 42, ..., 4y} be with 43 >4 > -+ > 4,1 > 4, > 0. Then there
exists a generalized stochastic M-matrix A € CS,, with spectrum A for each JCF
allowed by A.

Proof: Let a > 4. Consider the list

N={a—lp,ad—Ay_1y esa@—dpya— M}

Let D = diag{a — A, @ — Ay_1, ..., — A1} and let P the Perfect matrix in (4). Then
B =PDP'eC(CS,_,, is positive with spectrum A’ and diagonal JCF. Let D + E, with E
the matrix defined in the Introduction, the desired JCF. Then we have

D+E=P 'BP+E=P'(B+PEP")P.

It is clear that for &> 0 small enough, B + éPEP " is positive with JCF D+E There-
fore, since D + ¢E and D+E are similar (with the matrix M = diag{l, £ €. ..., 8"’1}),
A = al — (B+ ¢PEP ") is an M-matrix in CS;, with the prescribed elementary divi-
SOrS.

Theorem 4.8 Let A = {A1,a £+ bi, ...,a £ bi} be a list of n complex numbers with
M>0,a>0,b>0.1If

n+1

/11 <a— b, (S)

then there exists an # x7 M-matrix with spectrum A for each JCF allowed by A.
Proof: Let a >a. Consider the list

N ={a— M, (a —a) £bi, ...,(a —a) £ bi}

Since /1 <a — ”—glb, thena— A1 >a—a+ ”T“b. From [Arrieta et al. (21), Theorem
2.1], if (5) holds then there exists a nonnegative matrix B € CS,_,, with spectrum A’

and the prescribed elementary divisors. Then A = af — B is an M-matrix with spec-
trum A for each JCF allowed by A.
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5. Conclusions

In this chapter, we revisit the problem of universal realizability of spectra [2], with
new advances and results, which contain two important extensions of the Minc result
[4] and new universal realizability criteria for general and structured matrices. Several
open questions have been answered, while others remain open, such as under what
conditions diagonalizably realizable implies universally realizable? Recent develop-
ments on this question are introduced in Soto and Marijudn [28].
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