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Abstract

Small extracellular vesicle (sEV) RNAs, particularly microRNAs (miRNAs), have 
emerged as pivotal biomarkers for cancer diagnosis and prognosis. Encapsulated within 
sEVs, these miRNAs reflect specific cellular characteristics and disease states, offering 
a window into cancers’ molecular underpinnings. Notably, miRNAs, such as miR-7977, 
miR-98-3p, miR-620, and miR-17-5p in lung cancer and miR-373, miR-1246, miR-
223-3p, and miR-21 in breast cancer, have been identified in sEVs extracted from vari-
ous bodily fluids, including blood, urine, and saliva. Their remarkable stability and ease 
of isolation make them prime targets for non-invasive cancer detection strategies. The 
fold change of these miRNAs is intricately linked with cancer progression, metastasis, 
and therapeutic responses, underscoring their potential as diagnostic and prognostic 
markers. Traditional detection methods like quantitative reverse transcription-poly-
merase chain reaction (qRT-PCR) have been foundational; however, recent biosensing 
technologies, such as nanopore sequencing and microfluidic chips, offer enhanced 
sensitivity and specificity for detecting miRNAs in clinical samples. These innovative 
approaches refine the detection process and pave the way for real-time monitoring of 
disease progression and treatment efficacy. Overall, the collective evidence positions 
sEV miRNAs as robust indicators for cancer, signalling a shift towards personalised 
cancer care that emphasises early detection and tailored treatment strategies.

Keywords: extracellular vesicles, miRNA, mRNA, personalised medicine, RNA 
biomarkers

1.  Introduction

Cancer remains a significant health challenge, necessitating early and adequate 
diagnostic measures. The advent of non-invasive cancer detection techniques heralds 
a new era of clinical diagnostics, enabling frequent monitoring of treatment effec-
tiveness and facilitating adjustments to treatment plans for personalised care [1, 2]. 
Such advancements significantly enhance patient outcomes, allowing for early 
screening and diagnosis before the onset of symptoms and improving survival rates 
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by treating cancers at stages when they are more responsive to therapy [3]. Despite 
progress in biomarker research aimed at alleviating the cancer burden, current 
diagnostic methods still grapple with issues of specificity, sensitivity, prolonged 
processing times, and invasiveness. The exploration of liquid biopsies marks a 
promising direction, yet the quest for cell-specific signatures with high reliability 
presents a formidable challenge [4]. Consequently, researchers increasingly focus on 
innovative approaches, especially developing biomarkers derived from minimally or 
non-invasive bodily fluids such as blood, urine, and saliva [4–6].

sEVs, such as exosomes, have emerged as critical players in this context. 
Originating from cellular endosomal compartments, these nanoscale membrane-
bound vesicles (30–200 nm) reflect distinctive molecular signatures based on their 
cell of origin, carrying specific cargoes of RNAs, proteins, and lipids into the extracel-
lular space [7, 8]. Contrary to earlier perceptions of sEVs as mere carriers of metabolic 
waste, ongoing research underscores their significant role in both physiological 
processes and pathological conditions [9]. The ability to non-invasively detect these 
vesicles in bodily fluids offers a window into cellular and disease processes, making 
sEVs a valuable tool in diagnosing, prognosis, and monitoring various cancers [8, 10].

The focus on cellular RNAs, particularly miRNAs, circRNAs, and lncRNAs, has 
intensified, given their roles in cancer pathophysiology [11–13]. The intersection of 
sEV cargo with miRNAs has garnered significant attention for its potential in cancer 
biomarker research. The transfer of sEV miRNAs can profoundly influence tumour 
progression, highlighting their importance in the disease molecular landscape 
[14, 15]. However, the field faces specific challenges, including technical difficulties 
in sEV miRNA detection and the need for standardised methodologies to ensure 
reliability and reproducibility across studies. Addressing these challenges is crucial 
for advancing the clinical application of sEV miRNAs as biomarkers. Recent studies 
exemplify the potential of sEV miRNAs in cancer diagnosis. For instance, research has 
demonstrated the efficacy of miR-21 encapsulated in EVs as a prognostic marker for 
non-small cell lung cancer, offering insights into tumour aggressiveness and patient 
survival outcomes [16]. Another study highlighted the role of sEVs miR-155 in breast 
cancer, correlating its levels with disease progression and response to treatment [17].

This chapter discusses the complex process of sEVs formation, selective packaging 
of miRNAs and their significance in cancer diagnosis. It provides a comprehensive 
overview of the biogenesis of sEVs from the plasma membrane to their release into 
the extracellular space, as well as the critical role played by various proteins in this 
process. The discussion also covers standard sEV isolation methods, such as ultracen-
trifugation, precipitation, and microfluidics, as well as recent advances in miRNA 
detection techniques including digital droplet PCR (ddPCR) and nanoflares. Further, 
this chapter also examines the advantages and drawbacks of these techniques and 
explores the analysis of sEV miRNA expression profiles in different types of cancer. 
This highlights the potential of sEV miRNAs as non-invasive biomarkers for early 
detection, diagnosis, and prognosis of cancer. Consequently, it provides valuable 
insights into tumour development, progression, and response to therapy.

2.  sEVs biogenesis and miRNA packaging

sEVs are formed through a complex biogenesis process that unfolds in distinct stages. 
This process begins with the formation of endocytic vesicles from the plasma membrane, 
which then undergoes inward budding to form multivesicular bodies (MVBs) that house 
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intraluminal vesicles (ILVs). Following their formation, MVBs can merge with lysosomes 
for degradation or fuse with the plasma membrane, releasing sEVs into the extracellular 
space (Figure 1). During these stages, various cytoplasmic biomolecules, including 
nucleic acids and proteins, are selectively incorporated into the lumen of EVs [18, 19].

Central to the biogenesis of sEVs is the action of the endosomal sorting complexes 
required for transport (ESCRTs), which are organised into four main complexes: 
ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. The process starts with ESCRT-0, 
which is responsible for gathering cargo molecules. ESCRT-I and ESCRT-II then con-
tribute to the budding of the membrane, encapsulating the selected cargoes within. 
Following this, ESCRT-III is crucial in cutting the membrane to release ILVs packed 
with cargo into the MVB [18, 20, 21]. Accessory proteins, notably ALIX and TSG101, 
play essential roles in the efficient packaging of cargo and the overall biogenesis of 
EVs. ALIX aids in encapsulating cargo and forming vesicles by attracting ESCRT-III 
to the site, which is necessary for ILV formation. On the other hand, TSG101 is vital 
for forming MVBs triggered by EGF, a step critical for generating sEVs. These mecha-
nisms ensure the selective packaging of molecular contents into sEVs, highlighting the 
sophisticated nature of exosome biogenesis and release [20, 22].

The process of sorting microRNAs (miRNAs) into sEVs involves a sophisticated 
interplay of RNA-binding and membrane proteins (Figure 1), as detailed in the 2020 
review by Michael et al. [23]. Key RNA-binding proteins such as Heterogeneous nuclear 
ribonucleoprotein A2B1 (hnRNPA2B1), Argonaute 2, Y-Box Binding Protein 1, Major 
Vault Protein (MVP), and La Protein play crucial roles in this process. For instance, 
hnRNPA2B1 binds to miRNAs, aiding their incorporation into sEVs. Argonaute 2 trans-
ports miRNAs into sEVs through the KRAS-MEK-ERK signalling pathway. Similarly, 
Y-Box Binding Protein 1 facilitates miRNA loading into sEVs, while MVP and La Protein 
are responsible for the direct transfer of miR-193a into sEVs.

Figure 1. 
Mechanism of sEV biogenesis and miRNA sorting. sEV biogenesis starts with formation of endosomes from the 
plasma membrane and is followed by development of MVB. Then, target miRNA molecules approach the MVB 
membrane for packing into sEVs. The sorting of miRNA into sEVs could be mediated by ESCRTs, RNA-binding 
proteins, and some of the membrane proteins. Afterwards, sEVs will be released into extracellular space by 
merging with lysosomes or fusing with plasma membrane.
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Membrane proteins also contribute significantly to miRNA sorting. Caveolin-1 
(Cav-1), for example, is essential in directing RNA-binding proteins to sEVs, espe-
cially under oxidative stress conditions. In such scenarios, Cav-1 influences the post-
translational modifications of hnRNPA2B1, ensuring the selective incorporation of 
miRNAs into budding epithelial MVs [24]. Furthermore, the overexpression of Neural 
Sphingomyelinase 2 (nSMase2) has been shown to increase the expression of miRNAs 
in sEVs without altering the miRNA levels within cells [25]. Additionally, the overex-
pression of Vacuolar protein sorting-associated protein 4 (Vps4A) boosts the levels 
of sEV miR-27b-3p and miR-92a-3p, whereas inhibiting Vps4A decreases the levels 
of sEV-derived miR-92a and miR-150, as demonstrated in studies by Jin et al. and 
Charles et al., respectively [26, 27]. The complex process of directing miRNAs into 
sEVs showcases the synchronised actions of numerous proteins. Each of these pro-
teins plays a specific role in accurately and methodically incorporating miRNAs into 
sEVs. This coordinated mechanism ensures that miRNAs can effectively participate in 
cellular communication and influence disease-related pathways [19].

In the context of cancer microenvironments, miRNA packaging into sEVs is 
influenced by additional, yet not fully understood, mechanisms, especially related 
to specific cancer conditions. Research by Diana et al. demonstrated that miR-10b is 
predominantly found in sEVs from wild-type cells, whereas miR-100 is more common 
in sEVs from cells with KRAS mutations [28]. Moreover, inhibiting NSMase resulted 
in an accumulation of miR-100 exclusively in the mutant cells, suggesting that the 
export of miRNAs can depend on the KRAS status. Another study by Sonia et al. 
showed that cancer-derived sEVs tend to accumulate the Dicer enzyme, facilitated by 
CD43, which is crucial for processing precursor miRNAs into their mature forms [29]. 
These discoveries highlight the intricate nature of miRNA sorting and processing 
within sEVs in cancer, pointing to novel diagnostic and therapeutic targets. Despite 
these insights, the exact reasons why miRNAs are sorted into sEVs in cancer remain 
debatable. The potential roles of this sorting range from simple elimination of cellular 
waste to participation in more complex biological processes [19, 30]. This uncertainty 
underscores the need for further research in sEV studies to fully understand the 
implications of miRNA sorting and its impact on tumour biology.

3.  Isolation and characterisation of RNA-containing sEVs

Isolating and analysing RNA-containing sEVs are critical steps in unravelling 
their roles in biological processes and assessing their potential in cancer diagnostics. 
Researchers use various techniques to extract sEVs enriched with RNA from bodily 
fluids such as blood, saliva, and urine. Standard methods include ultracentrifugation, 
size exclusion chromatography, precipitation, microfluidics, immunoprecipitation 
targeting EV surface markers, and commercial isolation kits. As detailed in our 
previous review [31], each method varied with respect to the yield and purity of sEVs 
produced. In addition, every technique has advantages and limitations.

Ultracentrifugation is a technique that can handle large sample volumes but 
requires costly equipment. Precipitation methods are more cost-effective and 
can be used with various biological fluids and sample sizes; however, the risk of 
co-precipitating contaminants is a concern. Size exclusion chromatography (SEC) 
can be optimised for different sample volumes, but it requires more standardisa-
tion and can produce varying results depending on the material and sample being 
used. Immunoaffinity methods can capture sEVs with high purity and potential for 
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subtyping, but they are only suitable for small sample volumes. Microfluidics-based 
isolation can yield high-purity sEVs, but it has limited sample capacity and the condi-
tions may affect the stability of the vesicles. Commercial kits can be used for simplic-
ity and to preserve the integrity of sEVs, but they are expensive and less suitable for 
diluted samples like urine. Therefore, choosing the appropriate method for efficient 
sEV isolation is essential based on the sample volume and type [31]. Previous studies 
have mainly used commercial kits and ultracentrifugation to isolate sEVs from serum, 
plasma, and urine (Table 1).

Following isolation, the characterisation of these RNA-containing sEVs employs a 
range of techniques. Nanoparticle tracking analysis (NTA) and transmission electron 
microscopy (TEM) are utilised to assess the EVs size, concentration, and structural 
details. Researchers estimate ratios such as proteins to particles, lipids to particles, 
or lipids to proteins for broader quantification. Techniques like Western blotting, 
ELISA, and RT-qPCR detect specific proteins and genes associated with EVs, serv-
ing as markers. Mass spectrometry further complements these methods by profiling 
the protein content of the EVs, offering more profound insights into their molecular 
composition [31]. Together, these characterisation techniques verify the quality and 
quantify the isolated RNA-containing sEVs, providing a thorough understanding of 
their potential for diagnostic applications.

4.  Detection of sEV miRNA

Quantitative real-time PCR (qRT-PCR) is widely used to identify and quantify sEV 
miRNA expression (Table 1). Still, ddPCR enhances this quantification with superior 
sensitivity, reproducibility, and accuracy [65]. Additionally, innovative methods like 
electrochemical sensing and surface-enhanced Raman scattering (SERS) are showing 
promising results in terms of consistency and selectivity. For instance, Lipei et al. 
crafted a biosensor that combines electrochemical detection, ratiometric readout, and 
DNA structural transformation to sensitively detect EV miR-21, achieving a detection 
limit as low as 2.3 femtomolar (fM) [66]. This method stands out for its enhanced 
stability and reliability. Similarly, Xinyu et al. unveiled an ultra-sensitive electro-
chemical biosensor employing cascade catalytic hairpin assembly (CHA) and multi-
layered enzymes for detecting trace amounts of miRNA-21 in actual samples [67]. Yue 
et al. designed a microfluidic SERS sensor capable of detecting EV miRNA as low as 
1 pmol/L, employing rolling circle amplification (RCA) and tyramine signal ampli-
fication (TSA) to boost sensitivity significantly [68]. In the realm of colorimetric 
detection, Yaokun et al. developed a copper-mediated strategy that uses DNAzyme 
signal amplification and visible light-triggered reactions for pinpointing miR-21 
presence [69].

On the device front, Takao et al. presented a nanowire-anchored microfluidic 
device that efficiently isolates urine sEV-encapsulated miRNAs [70]. This device 
promises to enhance cancer diagnostics by facilitating rapid miRNA extraction from 
minimal urine volumes and is applicable to a wide range of cancers beyond just 
urological ones. Building on this, Xue et al. combined nanoflare technology with CHA 
amplification for in situ, extraction-free, and highly sensitive sEV miRNA analysis. 
Their clinical tests show potential for accurately distinguishing different cancer types 
with 99% accuracy from plasma samples [71]. Furthermore, Xuting et al. introduced 
a novel method for detecting sEV miR-1246 with high sensitivity by creating hybrids 
between sEVs and cationic liposomes, allowing for precise quantification of sEV 
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miR-1246 [72]. Together, these advancements highlight significant progress in the 
field of sEV miRNA detection, offering improved sensitivity and potential for clinical 
application in disease diagnostics.

5.  sEV miRNA as diagnostic tools in cancer

miRNAs are crucial for gene regulation in eukaryotic organisms, affecting a 
wide range of developmental and disease processes. These miRNAs can be found 
in body fluids like saliva, urine, and blood, maintaining their stability within EVs. 
The miRNAs within sEVs, which reflect those of the tumour cells they originate 
from, are emerging as valuable biomarkers for cancer due to their durability and 
unique expression profiles [18, 19]. Initial research, such as the study conducted by 
Guilherme in 2009, found that miRNA profiles from sEVs in peripheral circulation 
and those from tumour-derived sEVs were similar, but the average concentration 
of miRNAs was significantly different in control groups [73]. This was followed by 
studies demonstrating the feasibility of detecting sensitive prostate cancer markers in 
sEV RNA from small urine samples [74]. In 2010, Keiichi and colleagues spotlighted 
the significance of the let-7 miRNA family in identifying metastatic gastric cancer 
through sEVs [75]. These early findings laid the groundwork for using sEV RNA as 
a snapshot of the tumour’s genetic landscape, facilitating miRNA analysis without 
the need for tissue samples. This approach is promising for screening people without 
symptoms and tracking disease recurrence, enhancing cancer diagnostics in recent 
years. The streamlined workflow for identifying sEV miRNA-based biomarkers in 
cancer diagnosis is illustrated in Figure 2.

In lung adenocarcinoma (LUAD) patients, increased levels of serum sEV miRNA 
ExomiR-7977 and reduced miR-98-3p highlight their potential as markers for diagno-
sis and staging accuracy [32]. Min and colleagues discovered elevated sEV miRNAs, 
such as ex-miR-21-5p, -126-3p, and -140-5p, suggesting these are precise, sensitive, 
and reliable markers for LUAD diagnosis [33]. Additionally, early-stage non-small cell 
lung cancer (NSCLC) showed significantly higher levels of serum sEV miR-146a-5p 
and miR-486-5p compared to benign conditions and healthy individuals, according 
to qRT-PCR results. The combination of serum and sEV miRNAs increased diagnostic 
sensitivity and specificity [34]. Recent breakthroughs in technology have brought 
about a novel biosensor that leverages nanoflare technology and catalysed hairpin 
assembly (CHA) amplification. This tool allows for direct, highly sensitive analysis 
of miRNAs within sEVs without the need for sample extraction. In clinical cohort, 
this method distinguished between breast, lung, liver, cervical, and colon cancers 
in 64 patients with an astonishing 99% accuracy, showcasing its precision in cancer 
diagnosis [71].

Research has identified a significant increase in hsa-miR-21-5p levels within breast 
cancer (BC) sEVs, making it possible to differentiate BC patients from healthy indi-
viduals with a high degree of accuracy (sensitivity of 86.7% and specificity of 93.3%, 
as per ROC analysis) [76]. Pre-therapy miRNA profiling of 435 BC patients revealed 
variations in expression across different subtypes, with miR-155 and miR-301 linked 
to predicting responses to treatment. Notably, the miRNA profile varied significantly 
between the overall BC cohort, those with HER2-positive BC, and patients with 
triple-negative BC [17]. A particular study found that elevated levels of sEV miR-373 
were associated with triple-negative and more aggressive forms of BC, indicating 
its potential for diagnostic use [41]. Continuing research efforts include developing 
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methods for direct miRNA detection from exosomes in breast cancer cases, such as 
the introduction of an Au nanoflare probe by Leu et al. [77]. This probe, designed to 
target miR-1246 specifically, enters plasma sEVs and emits a fluorescent signal, offer-
ing a simple, accurate, and sensitive diagnostic approach.

In glioma, analysis of cerebrospinal fluid (CSF) from patients with recurrent 
disease revealed higher levels of sEV miR-21, suggesting its utility as a marker for 
diagnosis and prognosis [46]. This increase in EV miR-21 was found to correlate 
with tumour metastasis and recurrence. Within glioma tissues, miR-21 concentra-
tions were associated with the tumour’s grade and inversely correlated with patient 
survival rates. Experiments showing the suppression of miR-21 in glioma cells led 
to the upregulation of target genes, implicating its role in the progression of glioma. 
Additionally, increases in serum sEV miR-301a and miR-210 were observed in glioma 
patients, correlating with the severity and recurrence of the tumour [47, 48]. On the 
other hand, a decrease in plasma sEV miR-2276-5p was linked to poorer survival 
outcomes in glioma patients, identifying RAB13 as its target [49]. These discoveries 
underscore the significant potential of sEV miRNAs as biomarkers for the diagnosis 
and prognosis of glioma.

In colorectal cancer (CRC), the discovery of sEV miR-320d as a non-invasive 
marker has been pivotal in differentiating metastatic from non-metastatic cases, 
offering a clearer path for diagnosis and treatment strategies [78]. Additionally, miR-
125a-3p and miR-122 found in plasma sEVs have been identified to not only aid in the 

Figure 2. 
Detection workflow of sEV miRNA-based biomarkers in cancer diagnosis. This figure presents a streamlined 
workflow for identifying miRNA biomarkers within sEVs for cancer diagnostics. The process begins with the 
collection of biofluid samples, including blood, urine, and saliva, which are rich sources of sEVs. Following 
collection, sEVs are meticulously isolated from these samples to retrieve their miRNA cargo. The extracted 
miRNAs are then subjected to qPCR for precise quantification and analysis of specific miRNA expression 
patterns associated with various cancer types. The final step involves evaluating the clinical relevance of these 
miRNA signatures by determining their correlation with the presence of cancer, its progression, and its response to 
treatment, alongside assessing the diagnostic sensitivity and specificity based on the gathered data.



11

From Fluids to Forecasts: The Promise of Small Extracellular Vesicle miRNAs in Revolutionising…
DOI: http://dx.doi.org/10.5772/intechopen.1005059

early diagnosis of colon cancer but also serve as independent prognostic indicators, 
particularly for patients with liver metastasis [79, 80]. On the other hand, a decrease 
in sEV miR-139-3p levels in CRC patients, especially those with metastatic and 
submucosal involvement, has been noted as a potential marker for prognosis [50]. 
A group of sEV miRNAs, including miR-100 and miR-92a, has shown potential in 
distinguishing between chemotherapy-resistant and -sensitive CRC patients [81]. 
Bioinformatics analyses have further highlighted an sEV miRNA-mRNA network that 
plays a critical role in CRC, underlining the diagnostic importance of these circulating 
biomarkers [82].

In the realm of prostate cancer (PCa), serum sEV miR-141 has shown promise as a 
diagnostic biomarker, particularly noting its significant increase in cases of metastatic 
PCa compared to healthy individuals or those with benign prostatic hyperplasia 
(BPH) [53]. A study by Kyosuke et al. demonstrated the superiority of urine sEV sam-
ples in diagnosing PCa, with miR-30b-3p and miR-126-3p showing higher expression 
levels than traditional serum prostate-specific antigen (PSA) markers [54]. Further 
analysis by Manuel et al., using the International Society of Urological Pathology 
(ISUP) grading system, identified differentially expressed miRNAs that could help in 
the nuanced management of PCa under active surveillance, showing strong potential 
with AUCs ranging from 0.79 to 0.88 [83]. Expanding on this, Zhenquan et al. discov-
ered plasma exosome-derived miRNAs, including hsa-miR-125a-3p, hsa-miR-330-3p, 
hsa-miR-339-5p, and has-miR-613, as potential markers for detecting bone metastasis 
in PCa patients, marking significant progress in the development of non-invasive 
diagnostic and prognostic tools for prostate cancer [84].

Research into sEV miRNAs as tools for diagnosing and prognosticating a wide 
array of cancers, including bladder, ovarian, gastric, hepatocellular, thyroid, oral, 
and oropharyngeal cancers, underscores their vast potential across a myriad of cancer 
types. This wide-ranging investigation highlights the critical role of sEV miRNAs in 
enhancing the accuracy of cancer diagnosis and improving patient prognoses. In the 
case of bladder cancer, the detection of elevated levels of specific urinary sEV miR-
NAs, such as miR-96-5p, miR-183-5p, miR-93-5p, and miR-516a-5p, has been linked 
to significant clinicopathological features, offering a new method for early detection 
[63, 85]. A study by Akira et al. revealed that a combination of six miRNAs isolated 
from serum sEVs of ovarian cancer patients, when used alongside the CA-125 marker, 
greatly improved the sensitivity and specificity of tests for distinguishing ovarian 
cancer patients from healthy individuals, and for identifying early-stage ovarian 
cancer from benign tumours [57]. Furthermore, Naruyoshi et al. identified plasma 
sEV miR-21 and miR-92a as independent markers for the early detection of gastric 
cancer [59]. Additionally, Yoshimasa et al. found that sEV miR-23b serves as a reliable 
indicator for the recurrence and prognosis of gastric cancer at various stages [86].

In hepatocellular carcinoma (HCC), the enrichment of miR-21 in serum sEVs 
offers a more sensitive detection method, as highlighted by Hongwei et al. [61]. The 
presence of elevated levels of miR-122, miR-148a, and miR-1246 in serum sEVs, 
in combination with alpha-fetoprotein, has been shown to enhance the diagnostic 
accuracy for early-stage HCC significantly [87]. Chen et al. reported that lower levels 
of serum sEV miR-34a are associated with poorer survival rates in HCC patients [88], 
suggesting that its combination with other biomarkers like alpha-fetoprotein could 
improve diagnostic effectiveness.

The role of serum sEV miRNAs in diagnosing and prognosticating papillary 
thyroid carcinoma (PTC) has also been elucidated in recent studies. For instance, 
decreased levels of miR-29a in PTC patients have been shown to differentiate them 
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from healthy controls, with this downregulation correlating with more aggressive 
disease characteristics and poorer patient outcomes [62]. Moreover, circulating sEV 
miR-146b-5p and miR-222-3p have emerged as significant markers for detecting 
lymph node metastasis in PTC [89]. In oral squamous cell carcinoma, the diagnostic 
and prognostic value of both plasma and saliva sEV miRNAs, including miR-130a and 
miR-486-5p, has been demonstrated, with miR-486-5p showing a robust correlation 
with stage II of the disease [64, 90]. These discoveries collectively affirm the crucial 
role of sEV miRNAs as biomarkers for the diagnosis and prognosis of various cancers, 
offering promising avenues for non-invasive testing and tailored patient care. A 
comprehensive table summarising the expression patterns of different sEV miRNAs 
across various cancer types further illustrates their diagnostic and prognostic utility 
(Table 1).

6.  EV RNA databases

In the fast-evolving field of sEV RNA research, several vital databases have 
become critical for researchers. These platforms enable the collection, access, and 
analysis of data on EV RNA, playing a crucial role in advancing our understanding of 
these nano-vesicles. ExoCarta is a standout resource that provides detailed informa-
tion on the molecular contents of EVs, including mRNAs, miRNAs, proteins, and 
lipids. It compiles data from 286 studies covering a wide range of organisms, making 
it a rich source of information for researchers. This web-based platform also sup-
ports detailed functional analysis and interaction studies, and it actively encourages 
the EV community to contribute by identifying publications that might have been 
overlooked, thereby continuously expanding its database [91, 92]. EVpedia is another 
comprehensive database that offers an integrated view of sEVs, compiling data from 
503 high-throughput studies, 1114 datasets, and over 722,551 molecules. It is designed 
to enable comparisons across different studies and is particularly useful for exploring 
the RNA content of EVs. Since 2010, there has been a notable increase in the volume 
of articles, especially those related to eukaryotic organisms, aiding in discovering 
biomarkers and potential therapeutic targets [93]. VESICLEpedia consolidates a wide 
array of information on sEVs and related particles like microvesicles and apoptotic 
bodies. It comprehensively examines EVs’ various cargos, including lipids, metabo-
lites, nucleic acids, and proteins. This repository is invaluable for researchers focused 
on the diagnostic and therapeutic applications of EV RNA in various diseases [94]. 
Together, these databases represent vital tools for the EV RNA research community, 
offering extensive data repositories that support the exploration of EV functions, 
the identification of disease biomarkers, and the development of novel therapeutic 
strategies.

In the focused area of EV RNA research, three specialised databases have been 
developed to meet the varied needs of the EV community. These resources are 
crucial in advancing our understanding of extracellular RNA (exRNA), providing 
data storage, access, and analysis platforms. exRNA Atlas, created by the exRNA 
Communication Consortium (ERCC), is a dedicated repository for exRNA data. It 
contains a wealth of sequencing and RT-qPCR data from a wide range of human and 
mouse biofluids. The database enables users to search and analyse exRNA profiles 
based on the type of assay and specific biofluids, aiding in the identification and 
study of exRNA related to different health conditions and diseases [95]. exoRBase 
offers a focused look at long RNAs within EV, covering messenger RNA (mRNA), 
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Database Focus Website link

ExoCarta Exosomal mRNA, miRNAs, proteins, and lipids http://www.exocarta.org/

EVpedia EV mRNA, miRNAs, proteins, and lipids https://evpedia.info/
evpedia2_xe/

VESICLEpedia EV mRNA, miRNAs, proteins, and lipids http://microvesicles.org/

exRNA Atlas Exosomal RNA http://exrna-atlas.org/

exoRBase Exosomal long RNA species: mRNAs circRNAs, and 
lncRNAs

http://www.exorbase.org/

miRandola Non-coding RNA http://mirandola.iit.cnr.it/

Table 2. 
EV RNA databases and their focused molecules.

long non-coding RNA (lncRNA), and circular RNA (circRNA) derived from various 
human body fluids. This database integrates and visualises RNA expression profiles, 
highlighting changes in functional pathways and the heterogeneity of circulating 
EVs. With a primary focus on blood-derived samples, exoRBase is a valuable tool for 
in-depth studies and comparative analysis of EV RNA [96]. miRandola is a niche 
database that centres on miRNAs band and includes information on lncRNAs and 
circRNAs. It features a network visualisation of RNA-disease associations, compiled 
from the scientific literature, to illuminate the connections between specific RNAs 
and different tumours. This functionality is particularly beneficial for researching 
the roles of potential RNA biomarkers in cancer, offering insights into how these 
molecules interact with various diseases [97]. These databases (Table 2) collectively 
advance EV RNA research by providing centralised data deposition, sharing, and 
analysis platforms. Researchers can leverage these resources to delve into the com-
plexities of EV RNA content and its relevance in diverse biological contexts. These 
are expected to evolve as the field progresses, accommodating new findings and 
technologies in EV RNA research, further catalysing discoveries and innovations in 
this rapidly expanding field.

7.  Conclusions

In conclusion, studies on sEV RNAs in cancer research have indeed revealed a 
wealth of potential diagnostic and prognostic biomarkers. These discoveries offer 
profound insights into the underlying mechanisms of various cancers and pave 
the way for innovative therapeutic interventions. In particular, sEV miRNAs have 
garnered attention for their remarkable stability, specificity, and detectability in a 
multitude of bodily fluids, making them excellent candidates for biomarker discovery 
in cancer. Researchers have identified numerous sEV miRNA signatures that correlate 
with different types of cancer, disease stages, and prognoses, significantly enhancing 
our capacity to diagnose, monitor, and potentially predict disease outcomes. However, 
it is imperative to recognise that much of the current evidence is derived from stud-
ies with relatively small sample sizes. There is a pressing need for further validation 
studies involving larger cohorts to determine the clinical utility of these biomarkers 
conclusively. Additionally, there has been limited research into the dynamic changes 
of circulating sEV miRNAs before and after cancer treatment, which could offer 
invaluable insights into the effectiveness of therapeutic interventions.
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The potential of combining sEV miRNA profiles with existing cancer markers 
to improve diagnostic precision and sensitivity is particularly promising. Moreover, 
advancements in sEVs isolation and miRNA detection techniques are crucial for the 
application of these particles as novel biomarkers in clinical settings. Although the 
field is still developing, improving in situ detection methods for miRNAs represents 
a significant step forward. The creation and expansion of comprehensive databases 
such as ExoCarta, EVpedia, and exRNA Atlas have played a pivotal role in facilitating 
data sharing and analysis, accelerating research progress in this rapidly evolving field.

Overall, sEVs emanating from the tumour microenvironment possess unique 
miRNA cargoes that reflect the cellular origins and state of disease progression. The 
ability to capture these molecular signatures from biofluids and quantify them offers 
a promising avenue towards the realisation of minimally invasive or non-invasive can-
cer diagnostics. As we continue to explore the complexities of sEV miRNAs and their 
interactions within the tumour microenvironment, the prospect of harnessing these 
entities for the enhancement of cancer diagnosis and the development of personalised 
medicine approaches becomes increasingly tangible.
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