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Abstract

Adipose tissue mesenchymal stem cells (AD-MSC or ADSC) are multipotent cells
that do not show immune rejection. In this work, we analyze the route of administra-
tion and its possible differentiation into specific lineages of adipogenic, chondro-
genic, osteogenic, myogenic, or neurogenic phenotypes. Transplanted cells induced
tissue repair by inducing angiogenic, anti-inflammatory, and immunomodulatory
effects (IDO, PG-2, nitric oxide, and some cytokine signaling). The ADSC exert
these tissue repair processes through the release of chemokines and growth factors in
a paracrine manner. Other fat-derived stem cells such as perivascular adipose tissue
cells (PVAT) and muse cells induced reparative effects. Cell-free therapy using stro-
mal vascular fraction (SVF) or the use of exosomes releasing miRNAs and cytokines
also confirmed their safety and efficacy in vitro. Several published preclinical and
clinical trials with AD-MSC confirmed their beneficial effects to repair and prevent
chronic-degenerative pathologies. In this chapter, we review AD-MSC-based thera-
pies that have used preclinical rodent models of disease for cartilage repair, regenera-
tion of the peripheral and central nervous system, dental bone, myocardium, and
liver, and in the treatment of perianal fistula in Chron’s disease, and in wound and
skin fibrosis repair. In addition, this work also includes clinical studies with AD-MSC
or other fat-derived stem cells in patients with various pathologies.
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1. Introduction

1.1 Mesenchymal stem cells from adipose tissue (AD-MSC): Characteristics and
markers

Adipose tissue secretes adiponectin, leptin, and other adipokines involved in
metabolic functions [1]. The incidence of obesity in the world is high, and adipose
tissue aspiration (liposuction-lipoaspiration) is an esthetic surgical procedure that
reduces the amount of unwanted fat and also allows the isolation of autologous
adipose-derived stem cells (SC) (ADSC) [2]. Adipose-derived mesenchymal stromal
cells (AD-MSC) play a role in maintaining adipocyte populations and promote tissue’s
regenerative effects. Adipose tissue is an abundant, reliable, safe and feasible source
for mesenchymal stromal cell isolation. Adipose tissue contains a large number of
multipotent stem cells called adipose mesenchymal stromal cells (AD-MSC) and
lipoblasts, among other components, capable of differentiating into specific lineages,
such as adipogenic, chondrogenic, osteogenic, myogenic or neurogenic [3]. However,
AD-MSC obtained from subcutaneous fat deposits or abdominal fat is a heteroge-
neous cell population, and individual differences could affect autologous transplants
while allogenic transplants have the risk of immune rejection [4]. On the other hand,
the efficacy and functionality of transplanted MSC depend on number of trans-
planted cells, route of infusion, and frequency of administration [5-9]. However, the
number of AD-MSC transplants that reach the damaged tissue is low, although MSC
can differentiate into the specific cell type to replace it, given its multipotentiality.

It is known that multiple doses infusion of AD-MSC offer longer cell persistence
and are more effective than a single dose [9, 10]. It is also worthy to mention that
intravenous infusion of ADSC (or stem cells in general) lead to their accumulation
into the lung [11, 12], which could reduce the clinical efficacy of these transplanted
SC [13]. Inflammation produces chemokines (chemotactic cytokines) that recruit
MSC to damaged tissues. Homing or recruitment of stem cells to damaged tissues
depends on the route of administration [14-20].

One advantage of fat is its safety and easy procedure for SC isolation under local
anesthesia, making it less invasive than the puncture technique [21]. In addition, fat
from liposuction can be preserved in biobanks for long periods of time at —85°C with
cryoprotective agents. This fat can be isolated throughout life, although there are differ-
ences regarding the origin of fat in the number of cells obtained [1, 2]. In addition, the
proliferative capacity of isolated cells is greater in fatty deposits of young than in older
patients [22]. However, the composition of fat-derived SCs (or their subpopulations)
varies between laboratories and preparations, probably due to the lack of standardization
of in vitro isolation protocols [23-26]. The number of MSCs is limited and its proliferation
capacity decreases with successive passages iz vitro [27]. ADSC can adhere to plasticin
vitro and maintain a normal karyotype iz vitro through several growth passages (teen),
although its capacity of expansion progressively decreases i vitro [28]. Thus, the multipo-
tential capacity of differentiation into a wide variety of cell types converts them into good
candidates for biomedical applications. In fact, several studies have confirmed the long-
term safety of AD-MSC in rodent models of disease and clinical trials without adverse
effects or tumorigenesis [29-31]. Finally, adipose/fat tissue provides an abundant source
of stromal vascular fraction (SVF) cells while exosomes (exo0) are nanovesicles derived
vesicles released by SC that contain many soluble factors involved in cell repair [32].

Mesenchymal stem cells (MSC) are a multipotential heterogeneous population
of stromal cells that adhere to the plastic, including AD-MSC [33-35]. MSC can be
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isolated from bone marrow, adipose tissue, peripheral blood, Wharton’s jelly from

the umbilical cord, venous walls, placenta, periosteum, trabecular bone, or teeth,
including the periodontal ligament, among other tissues [36-39]. The main criteria
that identify MSC are their ability to adhere to the plastic iz vitro, their fibroblast-
type morphology, and the capacity of differentiation i vitro into cells of mesodermal
origin (chondrocytes, adipocytes, and osteoblasts) [36-40]. The first characterization
of these cells, obtained from human lipoaspirates, was demonstrated by Patricia Zuk
and coworkers [41, 42]. It was in 2004 when the International Federation for Adipose
Therapeutic and Science (IFATS) decided to unify the different nomenclatures of SC
derived from the vasculo-stromal fraction of adipose tissue with the acronym ADSC
(Adipose-derived Stem cells), including the mesenchymal stem cells from adipose
tissues (MS-ADSC) [33, 35]. During the aforementioned congress, this type of cells
was defined as fibroblast morphology cells able to adhere to the Petri dish iz vitro,
isolated from the stromal fraction of fat and with the capacity for self-renewal for
long periods, and able to differentiate into adipocytes, chondrocytes, and osteocytes.
ADSC are positive for the surface markers Stro-1 (stromal precursor antigen-1), CD73
CD29, CD44, CD90, CD105 and also are negative for the hematopoietic markers
(CD34 and CD45) [36-45]. Table 1 compares the properties of bone marrow-derived
MSC (BM-MSC) with ADSC (see table). In addition, ADSC also expresses CD44
(hyaluronic acid receptor), and adhesion molecules such as CD29 (integrin 1), CD90
(Thy-1: thymocyte antigen-1), surface enzymes such as CD13 (aminopeptidase),
CD71, CD105 (endoglin), CD73 (ecto-5'-nucleotidase). They also express CD49d
(VLA4), CD106 (VCAM-1), and CD54 (ICAM-1) markers [46-48]. However, tissue-
resident MSC may also express the hematopoietic stem cell (HSC) marker CD34 [49].
Although freshly isolated ADSC can express CD34, long-term cultured ADSC do not,
perhaps due to the artificial environment of the tissue culture plate [50].

On the other hand, perivascular stem cells are located in blood vessels, such as
pericytes or vascular precursor SC [51, 52]. ADSC is predominantly associated with
vascular structures in the adipose microvasculature having a CD34+/CD31 phenotype
of capillary endothelial cells [S0-53]. In fact, in fresh adipose tissues, CD34+ cells
are located in the intima and adventitia layers of blood vessels. However, MSC even
appear to be pericytes capable of stabilizing blood vessels and also contribute to tissue

Parameter BM-MSC (Bone marrow derived mesenchymal AD-MSC (Mesenchymal
stem cells) stem cells from fat)
Quantity of isolated Less abundant More abundant

cells from donnor

Accessibility Poorly accessible (located in the bone) Highly accessible (located
subcutaneously in fat)

Extraction procedure It requires general anesthesia It requires local anesthesia
Yield Lower efficiency in the number of isolated stem Higher efficiency in the

cells number of isolated stem cells
Does it require the Yes, the treatment with G-CSF (granulocyte- Not required
use of mobilizers? colony stimulating factor) enhances the number

of isolated SC

BM-MSC: bone marrow mesenchymal stromal cells; MSC: mesenchymal stromal cells; AD-MSC: adipose-derived
mesenchymal stromal cells.

Table 1.
Differences between bone mesenchymal stem cells (BM-MSC) and adipose stem cells (AD-MSC).

3



Stem Cell Transplantation

homeostasis, playing an active role in repairing against injury [53]. Following ADSC
transplants, controversial results on their repair capabilities were observed in both
preclinical models of the disease and in clinical trials [53, 54]. These discrepancies can
be explained by the infusion route used, differences in the cell type, and in the dose of
MSC applied, which may affect their clinical efficacy [7, 55]. Even so, the therapeutic
success of ADSC has been confirmed in multiple studies [56, 57], although there are
particular cases where results differ, given the lack of standardization among multi-
center clinical trials [58].

Finally, ADSC can be expanded in vitro as well as cryopreserved in biobanks under
good manufacturing practices (GMP) [59]. In allogeneic transplants, the compatibil-
ity between donor and receptor depends on the histocompatibility antigens (HLA).
Although allogeneic transplant often is well tolerated, the risk of immune rejection
could occur after transplant [59-61].

1.2 Differentiation capacity of adipose-derived stem cells (ADSC) into various
cell types

ADSC are progenitor cells that have a high capacity to differentiate into mesen-
chymal lineages such as osteocytes, adipocytes, and chondrocytes [28], although they
can also differentiate into non-mesenchymal lineages (hepatocytes, pancreatic p cells)
[28, 62-64]. ADSC can differentiate into adipocytes or osteoblasts, as fat-inducing
factors inhibit osteogenesis, and conversely, bone-inducing factors hinder adipogen-
esis. Several external signals regulate the balance of adipo-osteogenic differentiation,
and dysregulations of these balances contribute to aging, obesity, osteoporosis,
osteopenia, etc. The process of MSC differentiation into adipocytes or osteoblasts has
attracted great attention because of its potential repair capabilities in treating certain
pathologies [29].

1.2.1 Differentiation of adipose stem cells (ADSC) into mesenchymal lineages

As mentioned above, ADSC can be differentiated into adipogenic, osteogenic, and
chondrogenic lineages [65].

1.2.1.1 Adipogenic differentiation of ADSC

Given the origin of ADSC, undifferentiated cells express genes such as leptin,
lipoprotein lipase, and PPARgmama-2 (peroxisome proliferator-activated receptor
gamma-2). Their ability to differentiate into the adipogenic lineage is maintained
even after the cells have been transplanted [65]. ADSC cells are grown in adipogenic
medium with indomethacin, dexamethasone, 3-isobutyl-methylxanthine, penicillin/
streptomycin, and rh-insulin, I-glutamine. Differentiated cells express the PPARy2
marker (peroxisome proliferator-activated receptor gamma 2) or Glut4 [65].

1.2.1.2 Osteogenic differentiation of ADSC

Osteogenic induction of ADSC takes place for 21 days after adding osteogenic
factors to the culture medium, such as TGF-f and bone morphogenetic proteins
(BMP), dexamethasone, vitamin D3 and ascorbic acid/ascorbate, among others [65].
The capacity for osteogenic differentiation is confirmed by Von Kossa or Alizarin Red
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staining that identify mineralized matrix and calcium deposits at the histological level
[66]. During differentiation of ADSC into osteoblasts, the expression of bone markers
and mineralized extracellular matrix (ECM) increases, such as Runx-related tran-
scription factor 2 (Runx2), osteonectin, osteocalcin, alkaline phosphatase (ALP) and
collagen type I [65, 67, 68]. In fact, osteogenic differentiation is enhanced by transfec-
tion of ADSC with BMP-2 and Runx?2 [69, 70].

1.2.1.3 Chondrogenic differentiation of ADSC

Chondrogenic differentiation is induced by the addition of several factors in the
culture medium such as transforming growth factor family members (TGF-p betal
and 3), bone morphogenic protein (BMP-4) or basic fibroblast growth factor (bFGF).
The differentiation of ADSC takes place during 21-28 days, and it is confirmed by
Alcian Blue staining, which binds strongly to sulfated glycosamyglycans (GAGs)
and glycoproteins [65]. Chondrogenic differentiation is also confirmed by TGF-f
and SOX-9 expression, which is essential for the expression of type II collagen in
chondrocytes [67, 68]. In this way, SOX-9 overexpression enhances chondrogenic
differentiation and inhibits the osteogenic differentiation of MSC [71]. In addition,
proteoglycans in the cartilage-like matrix can be identified by toluidine blue or safra-
nin O staining [72]. Interestingly, the combination of L-ascorbic acid and platelet-rich
plasma (PRP) can increase the survival of ADSC and improve chondrogenic function
under appropriate concentrations [3].

1.2.2 Differentiation of adipose stem cells (ADSC) into non-mesenchymal
phenotypes (muscle, cardiac, neurogenic, or endothelial cells)

ADSC can also differentiate into non-mesenchymal phenotypes, such as myo-
genic, neuronal, or endothelial lineages [69, 73]. Myogenic capacity of ADSC was
demonstrated after transplantation into damaged rabbit muscles. In rodent models of
cardiac injury, ADSC transplantation promotes regeneration of damaged myocardial
tissue [64] On the other hand, human or rat ADSC can be differentiated into neuronal
lineages by treatment with beta-mercaptoethanol, which induces the expression of
beta-enolase, a neuronal marker [74]. In another study, treatment of ADSC with
endothelin-1 (a paracrine factor released by endothelial cells) promotes their dif-
ferentiation into endothelial cells with angiogenic properties. Finally, ADSC may be
useful in treating preeclampsia, a complication of hypertension in pregnant women
that leads to endothelial dysfunction [75].

1.3 Stromal vascular fraction (SVF) and exosomes (exo-ADSC) are adipose tissue-
derived products

1.3.1 Stromal vascular fraction (SVF)

Lipoaspirate is a medical waste that contains stromal precursor stem cells called
stromal vascular fraction (SVF). These cells are reliably and viably isolated from
fat by enzymatic dissociation with collagenase [41, 42, 76] or using commercial kits
[77]. The application of the local anesthetic method for SVF isolation with the col-
lagenase kit, which is subsequently inactivated, allows the SVF to be obtained from
the lipoaspirate [77]. The multipotent capacity of adipose tissue-resident stromal
cells was demonstrated in 2000, when it was discovered that adipose tissue stromal
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mesenchymal progenitor cells could differentiate into bone tissue iz vitro under

the right conditions [78]. In 2001, the presence of progenitor cells in subcutaneous
adipose tissue with inherent properties of MSC was discovered, with potential ability
to differentiate into chondrocytes, osteoblasts, and adipocytes. These cells exhibited
good self-renewal capacity inherent to progenitor cells and typical mesenchymal-like
markers on their surface, and at that time were termed processed lipoaspirate cells
(PLA cells) [41, 76]. In SVF, ADSC are immunophenotypically characterized as
CD45-/CD235a-/CD31-/CD31-/CD34+ markers, which represent approximately 20%
of total SVF [33, 64]. In 2013, IFATS published a statement that included the mini-
mum phenotypic criteria for characterizing uncultured SVF and also adherent ADSC
isolated from adipose tissue, which typically account for up to 3%, approximately
2500 times more than bone marrow-derived cells (see Figure 1) [65].

Among the components of SVF, there are certain paracrine factors (VEGF, SDF1
alpha, BDNF, etc.) that protect against osteoarthritis in patients with joint injuries,
especially of the knee [79]. The beneficial effects of SVF-associated therapy have
been confirmed in preclinical models and also clinical trials, especially in patients
with osteoarthrosis [80]. The clinical safety and efficacy of autologous SVF infusion
performed in patients with grade 3 and 4 arthritis demonstrated 67% improvement
in patients after stem cell therapy and with no adverse effects [81]. In this study,
SVF-induced anti-inflammatory effects reduced osteoarticular injury through the
release of nitric oxide, TGF-p1, stromal-derived factor (SDF-1 alpha), and other
chemokines [80, 82, 83]. The exact composition of the paracrine factors in this SVF
fraction and the exact molecular mechanism(s) by which SVF induces tissue repair
are questions to be clarified in further studies. In addition, the combination of SVF
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Figure 1.
Stromal vascular isolation fron fat.
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with platelet-rich plasma (PRP) could enhance anti-inflammatory responses through
the release of platelet-derived growth factor (PDGF) in patients [79].

1.3.2 Exosomes

Exosomes (exo) are small extracellular nanovesicles (size 40-150 nm) positive
for CD63 and CD9 tetraspanin markers, and result from the fusion of vesicular
bodies with the plasma membrane [80, 81]. Exo contains various nucleic acids
(miRNA, RNA), proteins, and lipids and are involved in the cellular trafficking pro-
cesses [81]. Soluble factors released by exo-ADSC promote anti-inflammatory and
angiogenic effects as exo contains a cholesterol-rich lipid bilayer and also carries
miRNAs that contribute to cellular repair mechanisms (miR-23a, miR-26b, miR-
125b, miR-130b, miR-140, miR-203a, miR-223, miR-224), but also several proteins
involved in many physiological processes [57, 84]. Figure 2 shows several molecules
involved in cell adhesion, prosurvival, and migration pathways of MSC, including
fat MSC (ADSC, see Figure 2).

1.4 Repair mechanisms of adipose stem cells (ADSC)

ADSC release a plethora of paracrine factors involved in their protective/repara-
tive effects, as demonstrated in several disease models in rodents, such as in diabetes,
liver regeneration, ankle pathologies or neurological diseases [85-89]. The angiogenic
capacity of ADSC depends on their origin [90], and they are cells carrying non-cod-
ing miRNAs involved in angiogenesis (e.g., miR-126, miR-296, miR-378, and miR-210
[91]). Activation of metalloproteases MMP-2 and 9 induces extracellular matrix
remodeling, whereas ADSC stem cell transplantation reduces their activity [92] for
the repair mechanisms of ADSC review (Figures 2 and 3).

The main protective and/or reparative mechanisms of transplanted ADSC are attrib-
utable to paracrine release of factors with angiogenic and/or immunomodulatory effects,
making them ideal candidates for clinical transplants in patients [91, 93-96]. Indeed,
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Figure 2.
Content of mesenchymal stem cell (MSC) exosomes (exo0): miRNA and proteins involved in cell adhesion,
migration, survival, and senescence.
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Immunomodulatory properties of mesenchymal stem cells (MSC).

MSC favors the conversion of proinflammatory M1 macrophage phenotypes to an anti-
inflammatory M2 phenotype and exerts immunomodulatory effects [97, 98]. MSC may
act as antigen-presenting cells (APCs) with immunosuppressive properties for allogeneic
stem cell therapy [98, 99]. Prostaglandin E-2 (PGE-2) and IDO are released by MSC

[15, 100, 101] and involved in their immunosuppressive activities [102-106]. In addition,
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Figure 4.
Repair mechanisms of mesenchymal stromal cells, including ADSC, promote angiogenic, protective, anti-
apoptotic, and immunomodulatory effects.
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TNF-stimulated gene 6 (TSG-6), another factor secreted by MSC, is stimulated by TNF-
alpha or IL-1, resulting in anti-inflammatory effects [106] and prevention of vascular
endothelial cell apoptosis ([107], see Figures 2 and 3). In a rodent infarction model,
MSC transplantation reduced neutrophil recruitment by promoting anti-inflammatory
effects dependent on TSG-6 protein levels concomitant with reduced MMP-6 activity in
damaged areas ([108], and see Figures 2 and 4).

The inflammatory response is regulated by a delicate balance between proinflam-
matory signals released by M1-type macrophages as scavengers that remove cellular
debris and M2-type macrophages that release cytokines that promote tissue repair.
MSC can convert macrophages from an M1 proinflammatory phenotype toward an
M2 anti-inflammatory effect. Activation of TNF-alpha-secreting macrophages by
MSC could inhibit inflammatory responses [108]. The ability of MSC to regulate
macrophage polarization through direct cell contact, although recent studies indicate
that the immunomodulatory properties of MSC largely depend on paracrine media-
tors secreted by them [107].

2. Translational applications of adipose stem cells (ADSC)

Bone tissue engineering allows for improved therapeutic options of ADSC for
the treatment of bone defects in situations such as reconstructive surgery, trauma,
malformations, or other pathological conditions. The therapeutic role of bone tissue
could also improve the quality of life of patients with osteoarticular problems. It is
known that osteoprogenitor cells can grow iz vitro, combined with an appropriate
scaffold [65]. ADSC combined with various types of organic or inorganic scaffolds
(polylactic acid, PLA, polyglycolic acid, PGA, glycolic acid, PLGA, fibrin, collagen,
gelatin) have been shown to have improved their in vitro repair capabilities [107].
Ceramics are known to exhibit osteoconductive properties, support osteogenic poten-
tial, and affect growth direction iz vitro [109]. ADSC growth, in combination with
bioactive factors and scaffolds, exhibits strong osteoinductive properties (biocompat-
ible and biodegradable) and increases osteogenic differentiation, enhancing bone
trabeculae formation without forming toxic by products. Overall, ADSC treatments
for bone regeneration are promising for the treatment of craniofacial defects [110].

2.1 Cell-based therapies for cartilage repair

The infusion route (intravenous, subcutaneous, etc.), dose, and frequency/timing
of administration affect the safety and clinical efficacy of autologous or allogeneic
human stem cell transplants [111]. Osteoarthritis (OA) is a progressive degenerative
joint disease characterized by deterioration of articular cartilage as well as pathological
changes in the adjacent subchondral bone. Cartilage injury is a leading cause of dis-
ability worldwide, and current conventional treatments (physical therapy, chondroitin
sulfate supplementation, and arthroscopic surgery) can improve joint function but
without complete reversal of pain. Since cartilage injury is a leading cause of disability
worldwide [110], autologous stem cell therapy treatment could promote cartilage
regeneration [111]. However, stem cells injected directly into the pain site often have
limited cell retention and a low survival rate, especially in large cartilage lesions,
which might reduce their clinical efficacy [112, 113]. In a mouse model of OA injury, a
single injection of AD-MSC into the knee during the early stage of OA inhibits carti-
lage destruction [114]. However, there was no effect when ADSC were infused at an
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advanced stage of the disease [115]. Given the limited efficacy of conventional treat-
ments against OA, intra-articular infusion of autologous stem cells could be a potential
approach for cartilage regeneration, including the application of exosomes or MSC-
derived advanced therapy drugs (ATMPs) against osteoarticular lesions [115, 116].

MSC can differentiate into chondrocytes, osteoblasts, and myocytes, among other
types of mesodermal cells (for review, see [117]). In one study, the authors demon-
strated that clinical symptoms improved during a 6-month follow-up after intra-arte-
rial injection of ADSC, in patients with osteoarticular problems [118, 119]. In another
study, an MSC-conditioned culture medium protected against bone defects. However,
the properties of MSC are affected by sex, age, and body mass index of donors [120],
leading to inter-individual differences between patients. On the other hand, the use of
scaffolds increases the viability of ADSC and their aggregation capacity in vitro [121].
The three-dimensional structure of ADSC loaded on scaffolds, as well as the pore
size, the type of material, and the stiffness of the scaffolds, are important factors that
could affect the osteoarticular regeneration processes. Indeed, certain biomaterials
(scaffolds) can enhance cartilage formation in vitro, as ADSC can be differentiated
into chondrocytes by the addition of certain recombinant proteins (IGF-1, TGF-p,
or BMP) to the medium [117]. MSC-derived cartilage increases mineralization and
promotes angiogenesis for bone formation in a SCID mouse model [116]. The use of
biomimetic injectable hydrogels can induce the release of soluble factors capable of
retaining stem cells at the target site. For example, natural materials favor cell adhe-
sion, promote their biodegradability, and regulate their mechanical properties [122].

Scaffolds with smaller pore sizes (90-250 pm) preserved cell adhesion properties
and favored proliferation, and also increased collagen type II expression [123]. In this
sense, a combination of a 3D type I collagen scaffold with platelet-derived growth factor
(PDGF) and insulin are biocompatible materials iz vitro and increase the chondrogenic
differentiation of ADSC [124]. Other studies have confirmed that hydrogel-based
scaffold systems can create cartilage but with better mechanical properties [125]. ADSC
cells in a PLGA-gelatin scaffold with immobilized TGF-p1 reduce cartilage damage and
improve cartilage quality [116]. The efficacy of intra-articular injections of hydrogels
(with and without ADSC) was evaluated in a collagenase-induced OA rat model 7 days
after induction of cartilage degeneration. The results showed that both hydrogel and
ADSC-hydrogel treated groups showed chondroprotective and anti-inflammatory
effects, suggesting that the hydrogel induces cartilage tissue regeneration [126-128]. In
this model, the OA lesion and inflammation were reduced by ADSC-hydrogel treatment.
In conclusion, the use of biomaterials combined with stem cells could be a good thera-
peutic option for OA patients. Although it is important to establish a specific therapeutic
option for each patient based on their degree of osteoarticular injury.

A recent systemic review of 4348 articles has evaluated the use of ADSC for
ankle orthopedy treatment, demonstrating the beneficial effects of AD-MSC against
osteoarticular lesions. For example, improvements in MRI outcomes after SVF treat-
ment together with marrow stimulation were demonstrated as compared to marrow
stimulation alone [129]. Other meta-analyses evaluated the effect of ADSC and SVF
in 82 studies with a total of 3594 treated patients with osteoarticular diseases. 70%
of these studies evaluated the effect of stem cells in osteoarthritis, and 26% dealt
with expanded ADSC. This review confirmed the heterogeneity of cell types used
for osteoarticular lesions from different sources of adipose tissue (for review consult
[129]). Thus, the safety and efficacy of SVF treatment to treat osteoarticular lesions
are associated with many protective mechanisms, among them the induction of
immunomodulatory effects and graft survival, leading to cell repair [130]. However,
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differences in the methodology for SVF isolation, donor age, etc., are limitations that
may reduce the efficacy of ADSC and adipose tissue-derived products. On the other
hand, lack of standardization of clinical procedures, as well as hormonal status or
comorbidities such as obesity may also affect the efficacy of ADSC transplantation.
Finally, differences in international regulations between countries may affect the
products available on the market. In some cases, conducting double-blind random-
ized trials without a true control group is another limitation [131]. Despite these
limitations, promising results highlight the clinical use of ADSC treatments for osteo-
arthritis pathologies (in general) by inducing anti-inflammatory and chondroprotec-
tive effects without serious complications [132]. Due to regulatory issues, most of the
research is still in the experimental phase, and most are preclinical results; therefore,
we are still far from reaching the generation of new cartilage due to the cellular and
molecular complexity of this tissue (see, Figure 5, [133]).

2.2 Regeneration of the central and peripheral nervous system by fat-derived stem
cells (ADSC)

Neuroprotective and promyelinating properties of conditioned culture medium
have been demonstrated in human adipose mesenchymal stromal cells [134]. This
study confirmed the repair capacity of isolated ADSC from intact adipose tissue of
10 subjects undergoing abdominal plastic surgery [134]. The therapeutic potential of
ADSC in the central and peripheral nervous system has been associated with its capac-
ity to differentiate into neurons, endothelial cells and Schwann cells, to the expression
of neuronal markers and to a faster proliferation rate than other types of stem cells
[135]. Neuronal differentiation of ADSC is mediated by several neurotrophins (NGF,
BDNF, GDNF, FGF) and hormones (IGF-1), which regenerate damaged nerves and
induce neuroprotective effects [89]. Neuronal degeneration and vascular damage can
lead to inflammation, followed by loss of oligodendrocytes and neurons in the lesions.
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Figure 5.
Repairing effects of ADSC in osteoarthritis.
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Therefore, ADSC administration could control the inflammatory response after injury
and could also improve regenerative capacity, given the contribution of vascular fac-
tors in repair [136]. In fact, vascularization is another factor involved in cell survival
and proliferation, and released vascular factors released by damaged endothelium
enhance ADSC-mediated regenerative effects (Figure 5, [137]).

ADSC exo-derivatives produce neuroprotective effects in rodent models of multiple
sclerosis, cerebral ischemia, and traumatic brain injury (TBI) [138, 139]. ADSC infu-
sion prevented TBI-induced neuroinflammation and also decreased secondary injury
as a consequence of TSG-6 release, leading to reduced microglial overactivation [140].

ADSC exo-derivatives can decrease the cytotoxic effect of overactivated microglia
by reducing the nuclear factor kappa-beta (NF-f) transactivation and regulating
mitogen-activated protein kinase (MAPK) pathway [92]. Axonal regeneration and
less reactive gliosis were evident after ADSC treatment in rats with spinal cord injury
[141]. In a multidisciplinary clinical trial, intrathecal infusion of ADSC decreased
the medullar lesion at L3-4 level of the spinal cord, and the evaluation of lesions with
objective criteria following the International Standards for Neurological Classification
of Spinal Cord Injury scores demonstrated improvements in these patients [142].
Preclinical findings confirmed that the combination of scaffolds and ADSC could
prevent symptomatology in certain neurological disorders, such as amyotrophic
lateral sclerosis, Alzheimer’s (AD), Parkinson’s (PD), or Huntington’s disease [142,
143]. Some clinical trials evaluated the safety and efficacy of ADSC to treat pathologi-
cal conditions in patients with Alzheimer’s, Parkinson’s or Huntington’s, or amyo-
trophic disease (see ClinicalTrials.gov, www.clnicaltrials.gov identification numbers
NCT03117738 and NCT02184546) [144-149].

2.2.1 Regeneration of the peripheral nervous system by ADSC

ADSC infusion in rodent models promoted regenerative effects of the peripheral
nervous system after sciatic nerve damage with varying degrees of severity. ADSC
treatment enhanced Schwann cell regeneration by increasing the number of myelin-
ated fibers in the damaged nerves. In fact, ADSC can be differentiated into Schwann
cells [150], and the use of compatible biomaterials iz vitro, such as PGA, PCL, and
collagen, increase the repair capacity of ADSC [151, 152].

2.3 Regeneration of the dental pulp by ADSC

ADSC treatment also promotes the regeneration of bone tissue in alveolar bone
defects, specifically in patients with periodontal disease [153]. The inclusion of ADSC
in PLGA matrices enhances bone growth in animal models. The synergic combination
of ADSC with fibrin also prevented inflammation and reduced bone resorption in
the tooth, suggesting that MSC from the oral cavity contributes to repair [154]. The
combination of autologous ADSC and Platelet-Rich Plasma (PRP) induces periodon-
tal tissue regeneration. For example, CD31 positive adipose population contributes
to promoting repair in dental pulp cells in dogs [153]. However, their applications in
regenerative dentistry need further confirmation with clinical trials [154].

2.4 Regeneration of the myocardium by ADSC

Several routes of infusion have been evaluated in transplants with ADSC into
the myocardium, such as intramyocardial, intravenous, or intracoronary injection.
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Transplantation with ADSC has promoted beneficial effects in cardiovascular
pathology due to its capacity for differentiation to the required cell type [155] and
the release of paracrine factors involved in angiogenic, anti-apoptotic, and anti-
inflammatory effects [156, 157]. Intramuscular and intracoronary infusion of ADSC
improved the left ventricular ejection fraction (LVEF) function [158], and inhibit
the fibrosis process [159]. The efficacy of direct infusion of ADSC into infarcted
myocardium in rodent models is limited, given the low survival rate of trans-
planted cells [158]. Intravenous administration of resistin-treated ADSC improved
LVEF function, reduced fibrosis, and decreased cardiomyocyte apoptosis [160].
Intracoronary administration of ADSC also reduced apoptosis (programmed cell
death) in the infarcted area of the myocardium without significantly affecting LVEF
[161], clearly indicating the relevance of the infusion route for ADSC transplanta-
tion. This intravenous administration significantly reduced infarct size and induced
angiogenesis [161].

On the other hand, the combination of biomaterials with ADSC creates a favor-
able microenvironment for tissue repair in the infarcted area [162]. Some studies
have addressed the factors involved in the reparative effect of ADSC. For example,
the overexpression of the Stromal Cell Derived Factor (SDF-1 alpha) chemokine as
aregenerative factor in stem cell therapy since it reduces apoptosis and enhances
angiogenesis, leading to protective effects [162, 163] and its overexpression prevented
detrimental consequences of myocardial infarction [164]. Overexpression of other
trophic factors such as IGF-1, VEGF, hepatic growth factor (HGF), and FGF-2 also
decreased apoptosis and enhanced angiogenesis [165, 166]. From this perspective,
several clinical trials have reported that intracardiac ADSC transplantation improved
the scales with improvement in cardiac function [164, 165].

2.5 Liver regeneration by ADSC

Acute liver failure or chronic liver diseases can be the consequence of infection
with viruses, toxins or even genetic factors. These liver diseases are characterized by
fibrosis and can provoke liver damage and inflammation with the consequent activa-
tion of hepatic stellate cells (HSC) [167]. Given that ADSC can differentiate into
various types of liver cells and have anti-apoptotic and immunomodulatory effects,
they could be useful for treating liver pathologies [168]. The administration of ADSC
suppresses the expression of proinflammatory cytokines and decreases the prolifera-
tion of activated HSC cells [168, 169]. In a rodent model of induced liver fibrosis by
CCl4 treatment, ADSC transplant or exosomes infusion markedly decreased liver
fibrosis, leading to apoptosis of HSC cells [170, 171]. In another study, ADSC injec-
tion into liver parenchyma protected cells against liver injury by inducing Superoxide
dismutase-1 (SOD-1) and produced anti-inflammatory effects by reducing IL-1
beta levels [172]. The culture of ADSC under hypoxia increase the expression Nrf2
transcription factor iz vitro (a nuclear factor erythroid 2 with antioxidant effects)
that protects against free radical-mediated toxicity in the liver [173]. Another factor
released by ADSC, such as hepatic growth factor (HGF), induced anti-inflammatory
effects by increasing IL-10, an anti-inflammatory cytokine [174, 175]. In addition,
exosomes from ADSC infusion reduced the levels of liver enzymes such as amino-
transferase (AST), alanine aminotransferase (ALT) activities and reduced lactate
dehydrogenase (LDH) activity [168]. Intravenous infusion of ADSC in a murine
model of liver injury prevented liver damage concomitant with decreased serum ALT
and AST activities. In a carbon chloride liver injury model, ADSC-derived exosomes
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carrying the modified miRNA-181-5p reduced liver fibrosis [176, 177]. The combina-
tion of ADSC with scaffolds such as PLGA markedly improved liver function and
reduced necrotic areas in the tissue [178]. Umbilical cord MSC (UC-MSC) infusion
reduces fibrosis and increases caveolin-1 in hepatic stellate cells [179]. Finally, some
clinical trials confirmed that ADSC infusion is safe and effective in treating liver
cirrhosis in patients. In these clinical trials, ADSC transplantation improved liver
function without any adverse effects [180, 181]. However, further clinical trials with a
larger sample size should confirm the long-term safety of ADSC in patients.

2.6 ADSC infusion for the treatment of perianal fistula

Perianal fistulas are a complication suffered by 20 to 25% of Crohn’s patients, and
the infusion of autologous or allogenic ADSC can promote reparative effects through
the release of paracrine, immunomodulatory, anti-apoptotic, and angiogenic factors.
Several clinical trials have confirmed a complete cure rate of anoperineal fistulas in
these patients. A phase III controlled trial confirmed the safety of treatment with
allogenic ADSC (Alofisel®), which induced a radiological remission in 60% of cases
[41, 42, 76, 182, 183]. Another phase II multicenter randomized controlled trial
has shown that infusion of expanded ADSC (20 to 60 million cells) in combination
with fibrin glue is safe and achieves higher cure rates than fibrin glue treatment
alone [184].

2.7 Skin repair by ADSC

Subcutaneous administration of AD-MSC is well-studied in esthetic medicine,
especially in cases of facial rejuvenation [185, 186]. Topical administration of
ADSC increases skin graft survival as well as wound healing capacity [187, 188].
Furthermore, subcutaneous injection of AD-MSC from different human donors did
not form teratomas in immunodeficient SCID mice up to 17 months after infusion.
Furthermore, increased cell survival, exclusively at the injection site, was observed
for at least 17 months after infusion, as well as these infused ADSC were able to dif-
ferentiate into subdermal tissue fibroblasts without migration to organs [188]. ADSC
transplantation normalized blood flow at the wound site [189], facilitated fibroblast
migration and proliferation, inhibited collagen deposition, and also decreased
a-smooth muscle a-actin expression in scar fibroblasts [189, 190]. ADSC differenti-
ate into skin stem cells and promote the accumulation of autologous skin SC. Several
trophic factors are involved in skin repair by ADSC, including epithelial growth factor
(EGF) receptor, while the increased release of GDF11 factor promotes skin anti-aging
effects. In addition, severe burn injuries and intractable ulcers are reduced after
ADSC transplantation during wound healing [191]. Reduced inflammation by ADSC
infusion promotes the polarization of proinflammatory M1 macrophages into their
anti-inflammatory M2 phenotype, contributing to wound healing repair in rodent
models of skin injury [192]. Autologous fat grafts with ADSC induce antifibrotic
and anti-inflammatory effects, but the exact mechanism of repair is not yet fully
understood.

Infusion of ADSC promotes reparative effects associated with the release of
cytokines (G-CSF, PDGF, HGF, IL-6, and IL-8), chemokines (Il-8, SDF-1 alpha), and
vascular factors (VEGF). Since ADSC are also modulators of metalloprotease activity
[193, 194], it is possible that they may promote anti-fibrotic effects by decreasing their
activity. By simulating the interaction of ADSC with fibroblasts and endothelial cells
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(ECs) in the skin, the ADSC secretome could alter scleroderma vascular inflammatory
foci (SSc) in the skin iz silico [192]. In a study using ADSC expressing Bcl-2 embedded
in collagen scaffolds to treat diabetic wounds, significant improvement in wound heal-
ing [194, 195], enhanced neovascularization, and decreased healing time compared to
controls were observed [196]. ADSC exosomes stimulated wound healing by increas-
ing fibroblast, keratinocyte, and endothelial cell proliferation [196, 197].

Several clinical trials have shown that ADSC transplantation has corrected facial
skin defects in patients with radiation injury [196] and that ADSC are safe and
effective in the treatment of this type of radiation injury [198]. In contrast, a single
dose of autologous fat grafting was insufficient to improve burn scars, perhaps due to
the small patient sample size. Overall, more clinical trials should confirm the clinical
efficacy of ADSC to treat wound healing [199].

Author Tissue Rodent model and Results

implantation of cells

Arrigoni Bone/rabbit Surgery implantation/ ADSC-induced bone formation with increased

etal. rabbit bone density

Chen etal. Bone/human  Surgery implantation/ Overexpression of miR-375 enhances osteogenesis

rabbit in vitro and in vivo
Efficiently reduced inflammatory responses

Lietal. Cartilagous Injection or surgery ADSC with scaffold promote long-term

implantation/rabbit regeneration

Choetal. Cartilagous Surgery implantation The transplant of ADSC was able to improves the
quality of cartilage

ter Huerne Cartilagous injection ADSC infusion improved synovial inflammation

etal.

Yinetal. Cartilagous Surgery implantation ADSC combined with an immobilized TGF
beta scaffold improves regeneration of defective
cartilage

Huetal. Nerves surgery implantation Improves nerve regeneration by ADSC treatment

Khingam Nerves surgery implantation ADSC promotes axonal regeneration

etal.

Lietal. Nerves Injection ADSC reduces neurodegeneration

Durco et al. Nerves Surgery implantation The ADSC infusion increase the number of nerve
fibers

Nagata et al. miocardium Transfusién ADSC Transplant Promotes Better Cardiac
Recovery

Bobi et al. miocardium Surgery implantation ADSC infusion improves perfusion in the
periischemic area of the myocardium

Mori et al. miocardium Surgery implantation Increases vascular density in the peri-infarct area by
ADSC infusion in the myocardial

Qiao etal. miocardium injection The combination of scaffolds with ADSCs increase
angiogenesis, decreases fibrosis, and reduces the
infarct size.

Zhang etal. liver injection ADSC combined with matrices increased
angiogenesis, reduced fibrosis, and reduced infarct
size

Table 2.

Preclinical studies with adipose stem cells (ADSC).
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3. Preclinical trials developed with fat-derived stem cells (ADSC) in
murine models

The following Table 2 indicates the preclinical findings with ADSC infusion in
murine models of disease, as well as the route of administration of the cells (for a
review refer to Dong et al. [61]) [65, 200].

4. Clinical trials with ADSC in patients with various pathologies

ADSC treatment of corneal and retinal lesions or optic nerve degeneration is
associated with corneal epithelial proliferation [61] and promotes anti-inflammatory
and immunomodulatory effects [61, 201]. The feasibility of ADSC to stabilize retinal
microvasculature has been conclusively demonstrated in a diabetic retinopathy model
[88, 202]. Another study reported that ADSC-loaded collagen sponge promoted repair
of tracheal defects and restored cilia motility function [203], as well as for the treat-
ment of silicosis (2010), asthma, or even inflammatory diseases [204, 205]. On the
other hand, autologous transplantation of ADSC can improve the functional recovery
of skeletal muscle and also favor its differentiation without direct involvement of
new myofiber formation [206]. ADSC have been used to treat autoimmune diseases
[207] such as systemic lupus erythematosus (SLE), Sjorgren’s syndrome, or Crohn’s
syndrome [208] or even for the treatment of type I diabetes mellitus [172]. Moreover,
the anti-inflammatory capacity of ADSC makes them ideal candidates for the treat-
ment of tendon injuries [209]. Furthermore, ADSC-derived extracellular vesicles also
prevent metabolic dysfunction due to steatosis liver disease [210]. The administration
of fat from subcutaneous abdominal adipose tissue (lipoaspirate) was evaluated in
patients with type 2 diabetes with insulin resistance compared with healthy donors.
In this study, patients with insulin resistance had a lower capacity for proliferation
of ADSC, which is usually the first stage of diabetes [211]. In addition, the expres-
sion of osteogenesis markers is higher in cells from patients with type 2 diabetes
(T2D), leading to the conclusion that type 2 diabetes modifies stem cell activity and
that insulin resistance reduces ADSC proliferation [212]. Stem cell therapy is a novel
therapeutic strategy for erectile dysfunction in patients with bilateral cavernous nerve
injury. A meta-analysis of 12 studies with 319 rats analyzed the efficacy of stem cell
transplants. Further studies will investigate the role of nerve restoration and vascular
cell recovery in urology [116].

Several trials have confirmed the safety and efficacy of autologous ADSC to treat
different pathologies [200, 213]. For example, fat is ideal for treating vocal problems
because it is a biocompatible material and is readily available. The main disadvantage
of its use is that resorption can cause long-term failure after its transplantation. In one
study, fat harvested from the liposuction procedure was centrifuged, and the fat cell
layer was injected directly into the vocal muscle. Fourteen patients received ADSC
treatment (18—74 years, mean age: 48 years) with respiratory dysphonia secondary
to laryngeal hemiplegia (n = 7) or anatomical defects (n = 7). The results confirmed
an improvement in voice quality after ADSC transplantation, and these patients
remained stable for 3-26 months (mean 10.6) [214]. In addition, seven patients
improved their paralytic dysphonia after stem cell therapy [206].

Immunophenotyping of SVF-enriched fresh fat grafts has been evaluated
for enhancing reconstructed breasts. Although fat injection into and around the
reconstructed breast may require repeated injections and fat necrosis may occur, it
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appears to be a safe technique that corrects significant contour deformities [215]. The
performance of both grafts was evaluated through volume measurement by magnetic
resonance imaging before and after 6 months of the operation in women for breast
reconstruction. The finding of this study indicates that fat injection corrects contour
deformities in the reconstructed breast [215].

A recent clinical trial has demonstrated the beneficial effects of allogenic ADSC
treatment in acute stroke. In this single-center, randomized, double-blind, placebo-
controlled, phase II pilot clinical trial, the safety and efficacy of allogeneic ADSC
therapy has been confirmed [216]. The American Diabetes Association indicates
that 85 percent of amputations result from complications arising from diabetic foot
ulcers or peripheral arterial disease. In this context, cell therapy could prevent limb
amputation by inducing the blood vessel formation and also reduce neuropathy relief

in diabetic patients (Table 3) [216].

Clinical trials with ADSC

Treatment with ADSC

Diseases conditions or Therapeutic
indication

Japanese UMIN clinical trial
registry (UMIN000022601)

The 3.3 x 10°/kg was administered
via the hepatic artery using
microcatheter IV,

The follow-up period was

24 weeks after implantation.

The patients underwent liver biopsies
prior to treatment. 24 weeks after
treatment the evolution of nonalcoholic
fatty liver disease (NAFLD) and fibrosis
were measured [200]

NCT02904824

Injection using autologous

fat enriched with ADSC vs.
autologous fat for the functional
reconstruction of the glottal gap
provoked by unilateral vocal cord
paralysis by laryngoplasty

Unilateral vocal cord paralysis (unilateral)

NCT02387723 without results
yet (results will be published
in2025).

Phase I-II, multicenter,
randomized, controlled clinical
trial for the study of factibility
of the cutaneous adult allogenic
adipose-derived mesenchymal
stem cells (AD-MSC) application
expanded on fibrin hyaluronic
biological matrix to treat venous
ulcer of the lower limbs (fistula).

Adipose tissue stem cells (ADSC)

on biological matrix for the treatment of
venous ulcer of the lower limbs

The incidence of adverse events (time
frame through study completion, an
average of 1year) were evaluated.

NCT02287974

Andalusian network for design
and translation of advanced
Therapies

n = 48 treated patients (Spain)
Clinical Trial I/II opened,
randomized and controlled for
the study of the Use of stem
Cells therapy in insulinized
diabetic patients type 2 with
critical ischemia in lower limbs
(CLI): study of the needs of
insulin

To study the effect of the stem
cells autologous mononuclear
treatment from the bone marrow
(n = 12), autologous progenitor
endothelial CD133 cells from

the bone marrow (n = 12) and
autologous mesenchymal stem
cells from adipose tissue (n = 12)
on proinflammatory cytokines,
the resistance to insulin as well as
the reduction of insulin treatment.
Inclusion criteria:

diabetic type 2 (treated with
insulin at least 3 previous
months).

vascular disease infrapopliteal,
atherosclerotic of severe degree

The critical ischemia of the foot is defined
as a persistent/persistent pain that needs
analgesia and/or not healing present
sores>4 weeks, without evidence of
improvement with conventional therapies
patients were included by the criteria

of impossibility of revascularization or
fail in the surgery of revascularization
(evaluated at least 30 days before, or entry
in phase of critical ischemia).
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Clinical trials with ADSC

Treatment with ADSC

Diseases conditions or Therapeutic
indication

NCT01828723
Interventional (Clinical trial
phase I, interventional)
Estimated enrollment: phase
one, open Label, single arm
study

single group assignment

Inclusion criteria:

female or male: age 18 years

or older that are scheduled for
liposuction (BMI between and
including 23 and 28) and facial fat
grafting procedures for cosmetic
purposes.

Facial volume defects treated with
a total graft volume of between
1mL and 50 ml.

Aim: to evaluate the safety of
concentrated SVF-enriched fat
graft by monitoring the number
and types of adverse events,
physical examinations, blood
draws (CBC/LFT/BMP), and
urinalysis (time Frame: 6 months)
were also evaluated

Conditions of disease: lipoatrophy/aging/
wrinkles

Demonstrate the safety of antria cell
preparation process during facial fat
grafting assisted with autologous SVF
treatment.

Outcome: to demonstrate the efficacy of
autologous SVF treatment via antria cell
preparation process by observing graft
survival time, volume, and quality of facial
re-contouring

(time frame: 6 months)

NCT01678534

(AMASCIS-01: phase IT)
Reparative effect of acute
allogenic mesenchymal stem
cells from adipose tissue against
ischemic stroke; evaluation

of safety assessment, in a
randomized, double blind
placebo controlled single center
pilot clinical trial (n = 19)
Masking: quadruple
(Participant, care

provider, Investigator,
outcomes assessor)
Intervention: ischemic

Stroke and placebo group
Quadruple (Participant,

Care Provider, Investigator,
Outcomes Assessor)

Aim: safety evaluation with
allogeneic MSC-ADSC

Study group: allogeneic stem cells
from adipose tissue

A single intravenous AD-MSC
infusion, dose (1 million units/kg)
infused within the first 2 weeks

after the onset of stroke symptoms.

Drug;: allogenic mesenchymal
stem cells from adipose in acute
ischemic stroke patients
(Follow-up 24 months)
Inclusion criteria:

Male or women with acute
ischemia (aged 60-80 years
with symptoms of acute cerebral
infarction).

Patients should be treated
within 2 weeks from the onset
of stroke symptoms.

Patients with a focal neurologi-
cal that must persist to the time
of treatment without clinically
improvement by computerized
tomography (CT) and/or MRI.
Patients must have a score on the
NIH Stroke Scale 8-20, with at
least 2 of these points and motor
deficit at the time of inclusion.

Primary Outcome Measures: number

of participants with Adverse events,
complications. (Time Frame: 24 months)
Adverse events (AES) were recorded
during all the study period (24 months)
Neurological and systemic complications
(brain oedema, seizures, respiratory
infections, deep venous thrombosis,
development of tumors, etc) were
measured.

Secondary outcome measures: to assess
the potential efficacy of allogeneic stem
cells from adipose tissue in acute ischemic
stroke patients by evaluating the outcome
at 3 months (NIH Stroke Scale, total
volume of stroke by performing MRI).
Changes in biochemical markers for brain
repair as VEGF, BDNF, MMP-9 and its
relationship to neurological and functional
outcomes were evaluated

NCT01649687
Phase1and IT
(n=7)

Aim: Allogeneic SC treatment for
the Treatment of cerebellar ataxia
with fat-derived MSC (ADSC)
Patients will receive intravenously
one dose of 5-7 x 1077 cells

of allogeneic adipose-derived
mesenchymal stem cells

Allogeneic adult adipose-derived
mesenchymal stem cells for cerebellar
ataxia treatment

Biological: allogeneic adult adipose-
derived mesenchymal stem cells for the
treatment of diagnosed of spinocerebellar
ataxia 3 (SCA3) or multiple system
atrophy-cerebellar (MSA-C, ages between
20 ~ 70 years).
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Clinical trials with ADSC

Treatment with ADSC

Diseases conditions or Therapeutic
indication

NCT01585857
A Phase I, prospective,
bi-centric, single-arm, open-

label (n = 18)

Aim: to study the safety (primary
aim) and efficacy (secondary aim)
of a single injection of autologous
ADSC on patients with moderate
or severe osteoarthritis of the knee.
Autologous ADSC for intra-
articular infusion (three study
groups with doses (2, 5, and 10
millions of ADSC intra-articular
injection in 5 ml)

Each patient will receive one single
administration for 3 months.

They will be follow-up during 1
year with routinely examinations
for safety issues.

The first patient will be followed
during 12 weeks before inclusion
of the second patient.

Osteoarthritis treatment with ADSC

to evaluate safety of a single injection

of autologous AD-MSC to treat severe
osteoarthritis of the knee joint

Primary outcome evaluation of adverse
events (Time frame: during 1 year,
following injection)

Secondary outcome measures: functional
status of the knee. Efficacy will be assessed
by scales for evaluating the osteoarthritis
index and range of motion of the target
knee joint, pain-specific assessment and
image analysis.

NCT01532076

Effectiveness of Adipose tissue
derived mesenchymal stem cells
as osteogenic.

Composite Grafts

Prospective randomized first in
men proof of principle trial

Aim: to study the effectiveness

of AD-MSC as osteogenic
component in composite grafts

vs. acellular bone graft substitutes
for augmentation in the treatment
of proximal humeral fractures as
model for fractures of osteoporotic
bone.

Experimental: graft by
lipoaspiration, SVF and embebed
in fibrin gel, wrapping around
hydroxyapatite granules

The control acellular composite
graft augmentation open reduction
internal fixation (ORIF) of the
fracture, augmentation with
acellular bone graft substitute.

Primary outcome measurements:
development of secondary dislocation
within 12 months postoperative

(Time frame: 12 months postoperative).
Secondary outcome measures: functional
outcome 6 weeks, 6 and 12 months

after fixation (Time frame: 12 months
postoperative).

Pain at either surgical site will be recorded
via the visual analogue scale.

Finally, bone mineral density

(Time frame: 12 months postoperative) in
case of implant removal was analyzed with
microcomputed tomography) for bone
mineral density.

NCTO0125776 Autologous hhAD-MSC (human Critical limb ischemia in diabetes
adipose tissue-derived MSC) to
treat lower extremity ischemia in
diabetes

NCT01222039 Aim: to assess the safety and Conventional treatment plus intravenous

Multicenter clinical trial phase
I/11 randomized, controlled,
for the evaluation of safety
and feasibility of two different
doses of allogenic AD-MSC in
patients with graft versus host
disease GVHD (n = 19).

feasibility of two-dose of
allogeneic AD-MSC infusion
expanded in vitro in patients
undergoing hematopoietic stem
cell transplantation, who have
developed chronic and extensive
GVHD.

Conventional treatment: gradually
descending dosage of prednisone
and cyclosporin or tacrolimus for
at least 46 weeks.

Starting dose: 1 mg/Kg/24 h
prednisone and 3 mg/Kg/12 h
cyclosporin.

Intravenous infusion of allogenic
AD-MSC (Low dose: 1 x 10°/Kg).

infusion of allogenic mesenchymal stem
cells from adipose tissue for the treatment

of GVHD.
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Clinical trials with ADSC

Treatment with ADSC

Diseases conditions or Therapeutic
indication

NCT01157650
Interventional
(clinical trial, n = 15)

Aim: evaluation of viability,
security and tolerance of allogenic
AD-MSC in fistulizing Chron’s
disease patients, collecting the
reactions and adverse events

(3 years of study)

Experimental: Autologous
mesenchymal stem cells
Fistulizing Crohn’s disease

Treatment of Fistulous Crohn’s Disease by
Implant of Autologous AD-MSC Tissue.
Evaluating the ADSC therapeutic effect,
in particular Fistulas healing efficiency.

NCT01056471

Multicenter clinical trial phase
I/1I randomized, placebo-
controlled study.

Aim: to evaluate safety and
feasibility of two different doses of
autologous AD-MSC from patients
with secondary progressive
multiple sclerosis who do not
respond to treatment

Intravenous infusion of
autologous AD-MSC (low 10°
cells/Kg and high dose: 4*10° cells/
Kg), including placebo control.

Condition of diseases: autoimmune
Diseases

immune System Diseases

demyelinating Diseases

nervous System Diseases

demyelinating autoimmune diseases, CNS
Autoimmune diseases of the nervous
system

NCT00442806
A randomized clinical trial of
adipose-derived

Subjects who have coronary artery
disease and have suffered acute
myocardial infarct

Stem cells for the treatment of myocardial
Infarction.
Primary outcome measures: to evaluate

The APOLLO Trial Eligible subjects will undergo safety determined by major adverse
(n=14). standard treatment after cardiac and cerebral events (MACCE)
admission and will then undergo (Time frame: 6 months)
liposuction for further ADRC’s or Secondary outcome measures: feasibility
placebo treatment. - assessment of cardiac function by MRI,
SPECT, and Echocardiography (Time
frame: 6 months)
NCT0177191324 Inclusion criteria for women: Study groups: centrifuged fat graft

Immunophenotyping of
Fresh SVF from adipose tissue
or enriched Fat grafts for
refinements of reconstructed
Breasts

contour irregularities and volume
insufficiency in reconstructed
breasts.

local flaps with conditions to
receive fat grafts

good health condition
Exclusion criteria:

breast cancer patients under
chemotherapy

bad health condition

patients too thin

patients that require secondary
reconstruction

in women who underwent breast
reconstruction.

Study-2: ADSCs enriched centrifuged fat
graft.

ADSCs enriched from the abdominal
subcutaneous tissue is isolated by
lipectomy and SVF isolated and
immediately added to the fat graft

in order- to increase the volume
insufficiency or correct contour
irregularities for reconstructed breasts.

This is the first development
safety update report
FIBHGM-ECNCO007-2010

The aim is to induce the
overexpression and production of
microvessels at local level.

Route of administration: injection
into the thickness of a parlay
(Phase I/II).

Clinical unicentric trial,
randomized, controlled, two
parallel-groups, to evaluate the
safety of ADSC derived from fatin
the glottal Gap zed vocal cord.
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Clinical trials with ADSC

Treatment with ADSC

Diseases conditions or Therapeutic
indication

NCT02904824

The facial recontouring by fat
was evaluated in the treatment of
glottic incompetence.

Study design and setting: fourteen
patients (aged 18-74 years) with
breathy dysphonia secondary

to laryngeal hemiplegia or
anatomical defects underwent
vocal fold lipoinjection. Fat
harvested by liposuction was
centrifuged, and the fat cell layer
injected into the vocalis muscle.
The patients underwent

pre- and postoperative

video laryngostroboscopy,
maximum phonation time
(MPT) measurements, and

voice handicap index (VHI)
self-assessments

Unilateral vocal cord paralysis (unilateral)

NCT02387723

Allogeneic ADSC in patients with
heart failure

Patients with heart failure will be
treated with culture expanded
AD-MSC from healthy donors
stored in nitrogen until use.

Heart failure

The cells will be injected directly into
the myocardium. The patients will be
followed for 6 months for safety and
efficacy registration.

Phase Il multicenter, clinical
trial, randomized controlled

Aim: to investigate the
effectiveness and safety of ADSC

Fistula healing was observed in 71 percent
of ADSC-treated patients. The proportion

trial for the treatment of complex of patients with healing was similar in

perianal fistulas safety of stem Crohn’s and non-Crohn’s subgroups.
cell-based therapy with expanded =~ However, ADSC were also more effective
ADSC against Crohn’s disease, and  than fibrin glue alone in patients with a
perianal cryptoglandular fistulas suprasphincteric fistulous tract.
(n=35n=14) At 1 year follow-up, both treatments were
Patients were randomly assigned well tolerated.
to fibrin glue or 20 million
ADSC cells plus plus fibrin glue
treatment.
Fistula healing was tested at 8
weeks and 1 year. If healing was
not seen at 8 weeks, they received
these treatments

Table 3.

Clinical trials conducted with fat stem cells in patients (consult number of each trial for move detail in www.

clinicaltrials.gov).

5. Future perspectives

ADSC are widely used to treat a wide range of clinical indications. Short follow-
up periods in some studies and low power of findings in clinical trials are explained
by low patient numbers. Furthermore, differences in regulatory practices between
countries may hamper the application of stem cell therapies. Standardization of
protocols and safety of long-term clinical trials need to be demonstrated before
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clinical application of AD-MSC and SVF against chronic diseases. Since complications
in adipose tissue are strongly associated with obesity, cardiovascular disease and type
2 diabetes, a better understanding of the cellular and repair mechanisms associated
with adipose organoids as promising tools together with stromal vascular fraction or
pluripotent stem cells as stem cell sources in the future is also needed [116].

Future perspectives should focus on mechanistic pathways for a better under-
standing of SVF properties. Long-term clinical studies are needed to truly confirm
safety in patients, as well as studying their optimal dosages for SVF-based therapies
over time in chronic diseases. Furthermore, studying the signaling pathways associ-
ated with the repair effect of ADSC, including the specific function of each SVF cell
type, may provide insight into the knowledge and clinical application of fat stem cell
therapies [217]. Small sample sizes of some studies reduce the power to detect signifi-
cant effects.

6. Conclusions

The application and development of ADSC are boosted by the field of biomaterials
and tissue engineering, which contribute to the improvement of the field of regenera-
tive medicine. Given its abundance and easy isolation procedure as a waste material,
liposuction fat is a good source for the isolation of ADSC for biomedical applications.
These ADSC infusion promotes anti-inflammatory and immunomodulatory effects
and the release of autocrine and paracrine functions, including chemokines and
growth factors contribute to repair processes. Finally, the differentiation capacity of
ADSC into various cell types could into specific local cell types in damage tissue also
prevent tissular damage. Several clinical trials with ADSC confirmed their protective
effects against chronic-degenerative osteoarticular injuries. However, further stud-
ies are required to evaluate the long-term biosafety and efficacy of ADSC stem cell
therapy. Standardization of protocols and the inclusion of a larger sample size are
required to confirm their long-term safety. However, a systematic review confirmed
the safety and efficacy of intra-articular application of autologous stem cells, fat-
derived against knee osteoarthritis with good results [218].
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